Neurodegenerative disease-specific induced pluripotent Stem cells research

2009 ◽  
Vol 65 ◽  
pp. S10
Author(s):  
Haruhisa Inoue ◽  
Shiho Kitaoka ◽  
Motoko Naitoh ◽  
Kazutoshi Takahashi ◽  
Katsuhiro Yoshikawa ◽  
...  
2021 ◽  
Vol 22 (9) ◽  
pp. 4334
Author(s):  
Katrina Albert ◽  
Jonna Niskanen ◽  
Sara Kälvälä ◽  
Šárka Lehtonen

Induced pluripotent stem cells (iPSCs) are a self-renewable pool of cells derived from an organism’s somatic cells. These can then be programmed to other cell types, including neurons. Use of iPSCs in research has been two-fold as they have been used for human disease modelling as well as for the possibility to generate new therapies. Particularly in complex human diseases, such as neurodegenerative diseases, iPSCs can give advantages over traditional animal models in that they more accurately represent the human genome. Additionally, patient-derived cells can be modified using gene editing technology and further transplanted to the brain. Glial cells have recently become important avenues of research in the field of neurodegenerative diseases, for example, in Alzheimer’s disease and Parkinson’s disease. This review focuses on using glial cells (astrocytes, microglia, and oligodendrocytes) derived from human iPSCs in order to give a better understanding of how these cells contribute to neurodegenerative disease pathology. Using glia iPSCs in in vitro cell culture, cerebral organoids, and intracranial transplantation may give us future insight into both more accurate models and disease-modifying therapies.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Thekkeparambil Chandrabose Srijaya ◽  
Padmaja Jayaprasad Pradeep ◽  
Rosnah Binti Zain ◽  
Sabri Musa ◽  
Noor Hayaty Abu Kasim ◽  
...  

Induced pluripotent stem cell-based therapy for treating genetic disorders has become an interesting field of research in recent years. However, there is a paucity of information regarding the applicability of induced pluripotent stem cells in dental research. Recent advances in the use of induced pluripotent stem cells have the potential for developing disease-specific iPSC linesin vitrofrom patients. Indeed, this has provided a perfect cell source for disease modeling and a better understanding of genetic aberrations, pathogenicity, and drug screening. In this paper, we will summarize the recent progress of the disease-specific iPSC development for various human diseases and try to evaluate the possibility of application of iPS technology in dentistry, including its capacity for reprogramming some genetic orodental diseases. In addition to the easy availability and suitability of dental stem cells, the approach of generating patient-specific pluripotent stem cells will undoubtedly benefit patients suffering from orodental disorders.


2012 ◽  
Vol 3 (2) ◽  
pp. 14 ◽  
Author(s):  
Xiaoning Mou ◽  
Yuanbo Wu ◽  
Henghua Cao ◽  
Qingzhang Meng ◽  
Qihui Wang ◽  
...  

2021 ◽  
Author(s):  
Yiling Hong ◽  
Xu Dong ◽  
Lawrence Chang ◽  
Mariann Chang ◽  
Chen Xie ◽  
...  

Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism dementia Complex (ALS-PDC) is a neurodegenerative disease linked to the traditional consumption of cycad seeds by the Chamorro people of Guam. Little is known about the etiological role of cycad toxin in ALS-PDC. Patient derived induced pluripotent stem cells were derived from age and sex matched affected and unaffected patient lymphoid cells then differentiated into cerebral organoids. After three months, the ALS-PDC affected organoids were smaller, their neurons had less extensive neurite outgrowth, and the organoids had more reactive astrocytes and M1 microglia, fewer resting and M2 microglia, and more open extracellular space. Most of these phenomena could be recapitulated by exposing unaffected organoids to β-methylamino L-alanine (BMAA), a toxic amino acid produced by cyanobacteria living with cycad plants. Furthermore, ALS-PDC affected organoids exhibited an exacerbated neuroinflammatory response to BMAA exposure via activation of caspase1/NLRP3 inflammasome. A genome-wide transcriptome analysis of the organoids showed that the most down regulated pathways were taurine, alanine, aspartate, and glutamate metabolism; protein digestion; and absorption. The most down-regulated biological processes were type I interferon signaling, regulation of neuron differentiation and extracellular matrix organization. Our results suggested that the etiology of ALS-PDC is due to metabolic disorders that shifted microglia to a more proinflammatory M1 state instead of a non-inflammatory, repairing M2 state, which exacerbated inflammation and reduced extracellular matrix strength. Supplementation of transforming growth factor beta to ALS/PDC affected organoids increased the expression of interferon-induced transmembrane proteins (IFITMs) and restored M2 microglia populations and extracellular matrix organization. Organoids containing networks of neurons, astrocytes, microglia derived from iPSC with our protocol provides an excellent cellular model for neurodegenerative disease modeling.


Sign in / Sign up

Export Citation Format

Share Document