Retinal projections into the Zona Incerta of the rock cavy (Kerodon rupestris): A CTb study

2014 ◽  
Vol 89 ◽  
pp. 75-80 ◽  
Author(s):  
Paulo Leonardo Araújo de Góis Morais ◽  
Melquisedec Abiaré Dantas de Santana ◽  
Judney Cley Cavalcante ◽  
Miriam Stela Maris de Oliveira Costa ◽  
Jeferson Sousa Cavalcante ◽  
...  
2003 ◽  
Vol 20 (5) ◽  
pp. 481-493 ◽  
Author(s):  
ISABELLE MATTEAU ◽  
DENIS BOIRE ◽  
MAURICE PTITO

The B fragment of cholera toxin (CTb) is a highly sensitive anterograde tracer for the labelling of retinal axons. It can reveal dense retinofugal projections to well-known retinorecipient nuclei along with sparse but distinct input to target areas that are not commonly recognized. Following a unilateral injection of CTb into the vitreous chamber of seven adult cats, we localized the toxin immunohistochemically in order to identify direct retinal projections in these animals. Consistent with previous findings, the strongest projections were observed in the superficial layers of the superior colliculus, the dorsal and ventral lateral geniculate nuclei, the pretectal nuclei, the accessory optic nuclei, and the suprachiasmatic nucleus of the hypothalamus. However, we also found labelled terminals in several other brain areas, including the zona incerta, the medial geniculate nucleus, the lateral posterior-pulvinar complex, the lateral habenular nucleus, and the anterior and lateral hypothalamic regions. The morphological characteristics of the retinal axon terminals in most of the identified novel target sites are described.


1999 ◽  
Vol 16 (6) ◽  
pp. 1037-1054 ◽  
Author(s):  
L.P. MORIN ◽  
J.H. BLANCHARD

The hamster intergeniculate leaflet (IGL), part of the circadian rhythm regulatory system, has very extensive interconnections with subcortical visual nuclei. The present investigation describes IGL connections with the hamster diencephalon and telencephalon and compares them with ventral lateral geniculate nucleus (VLG) connections and retinal projections. Connections of the geniculate nuclei were evaluated using anterograde transport of iontophoretically injected Phaseolus vulgaris leucoagglutinin and by retrograde transport of cholera toxin β fragment. The cholera fragment was also injected intraocularly to trace retinal efferents. The IGL has ipsilateral and contralateral projections to the anterior and posterior hypothalamic nuclei, the ventral preoptic, lateral and dorsal hypothalamic areas, but not to the core ventromedial nucleus and very sparsely to the paraventricular nucleus. There are also IGL projections to the medial and lateral zona incerta, anteroventral, anterodorsal, reuniens, parataenial, paraventricular, centrolateral, central medial, and laterodorsal thalamic nuclei. IGL projections to the telencephalon are found in the horizontal limb of the diagonal band, olfactory tubercle, nucleus of the lateral olfactory tract, posterior bed nucleus of the stria terminalis, ventral pallidum, and in nuclei of the medial amygdala. The only substantial VLG projections are to bed nucleus of the stria terminalis, IGL, medial zona incerta, central medial and laterodorsal thalamic nuclei. Several of the IGL targets, the bed nucleus of the stria terminalis and zona incerta in particular, send projections back to the IGL and VLG. In addition, cells are present in the caudal cingulate cortex that project to both nuclei. Retinal projections are found in many of the regions receiving IGL innervation, including nuclei of the medial basal telencephalon, the posteromedial bed nucleus of the stria terminalis, and nuclei of the hypothalamus. A retinal projection is also visible in the lateral olfactory tract from which it extends rostrally, then medially along the base of the rhinal fissure. Fibers also extend caudally, in a superficial location, to perirhinal cortex. The results further demonstrate the widespread connections of the IGL and support the idea that the IGL modulates olfactory, photic, and circadian rhythm regulation of regulatory physiology and behavior.


Neuron ◽  
2019 ◽  
Vol 104 (6) ◽  
pp. 1153-1167.e4 ◽  
Author(s):  
Andrew J. Weitz ◽  
Hyun Joo Lee ◽  
ManKin Choy ◽  
Jin Hyung Lee

Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2013 ◽  
Vol 109 (10) ◽  
pp. 2505-2516 ◽  
Author(s):  
Fu-Zen Shaw ◽  
Yi-Fang Liao ◽  
Ruei-Feng Chen ◽  
Yu-Hsing Huang ◽  
Rick C. S. Lin

The contribution of the zona incerta (ZI) of the thalamus on spike-wave discharges (SWDs) was investigated. Chronic recordings of bilateral cortices, bilateral vibrissa muscle, and unilateral ZI were performed in Long-Evans rats to examine the functional role of SWDs. Rhythmic ZI activity appeared at the beginning of SWD and was accompanied by higher-oscillation frequencies and larger spike magnitudes. Bilateral lidocaine injections into the mystacial pads led to a decreased oscillation frequency of SWDs, but the phenomenon of ZI-related spike magnitude enhancement was preserved. Moreover, 800-Hz ZI microstimulation terminates most of the SWDs and whisker twitching (WT; >80%). In contrast, 200-Hz ZI microstimulation selectively stops WTs but not SWDs. Stimulation of the thalamic ventroposteriomedial nucleus showed no obvious effect on terminating SWDs. A unilateral ZI lesion resulted in a significant reduction of 7- to 12-Hz power of both the ipsilateral cortical and contralateral vibrissae muscle activities during SWDs. Intraincertal microinfusion of muscimol showed a significant inhibition on SWDs. Our present data suggest that the ZI actively modulates the SWD magnitude and WT behavior.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dong Won Kim ◽  
Kai Liu ◽  
Zoe Qianyi Wang ◽  
Yi Stephanie Zhang ◽  
Abhijith Bathini ◽  
...  

AbstractGABAergic neurons of the hypothalamus regulate many innate behaviors, but little is known about the mechanisms that control their development. We previously identified hypothalamic neurons that express the LIM homeodomain transcription factor Lhx6, a master regulator of cortical interneuron development, as sleep-promoting. In contrast to telencephalic interneurons, hypothalamic Lhx6 neurons do not undergo long-distance tangential migration and do not express cortical interneuronal markers such as Pvalb. Here, we show that Lhx6 is necessary for the survival of hypothalamic neurons. Dlx1/2, Nkx2-2, and Nkx2-1 are each required for specification of spatially distinct subsets of hypothalamic Lhx6 neurons, and that Nkx2-2+/Lhx6+ neurons of the zona incerta are responsive to sleep pressure. We further identify multiple neuropeptides that are enriched in spatially segregated subsets of hypothalamic Lhx6 neurons, and that are distinct from those seen in cortical neurons. These findings identify common and divergent molecular mechanisms by which Lhx6 controls the development of GABAergic neurons in the hypothalamus.


Author(s):  
Ashesh A. Thaker ◽  
Kartik M. Reddy ◽  
John A. Thompson ◽  
Pamela David Gerecht ◽  
Mark S. Brown ◽  
...  

<b><i>Introduction:</i></b> Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson’s disease patients to improve targeting for deep brain stimulation. <b><i>Methods:</i></b> We conducted a prospective study to optimize and evaluate an MRI sequence to visualize the rostral zona incerta in patients with Parkinson’s disease (<i>n</i> = 31) and other movement disorders (<i>n</i> = 13). We performed a contrast-to-noise ratio analysis of specific regions of interest to quantitatively assess visual discrimination of relevant deep brain structures in the optimized MRI sequence. Regions of interest were independently assessed by 2 neuroradiologists, and interrater reliability was assessed. <b><i>Results:</i></b> Rostral zona incerta and subthalamic nucleus were well delineated in our 5.5-min MRI sequence, indicated by excellent interrater agreement between neuroradiologists for region-of-interest measurements (&#x3e;0.90 intraclass coefficient). Mean contrast-to-noise ratio was high for both rostral zona incerta (6.39 ± 3.37) and subthalamic nucleus (17.27 ± 5.61) relative to adjacent white matter. There was no significant difference between mean signal intensities or contrast-to-noise ratio for Parkinson’s and non-Parkinson’s patients for either structure. <b><i>Discussion/Conclusion:</i></b> Our optimized coronal gradient echo MRI sequence delineates subcortical structures relevant to traditional and novel deep brain stimulation targets, including the zona incerta, with high contrast-to-noise. Future studies will prospectively apply this sequence to surgical planning and postimplantation outcomes.


Sign in / Sign up

Export Citation Format

Share Document