scholarly journals Permanently compromised NADPH-diaphorase activity within the osmotically activated supraoptic nucleus after in utero but not adult exposure to Aroclor 1254

2015 ◽  
Vol 47 ◽  
pp. 37-46 ◽  
Author(s):  
Cary Glenn Coburn ◽  
Abena Watson-Siriboe ◽  
Borin Hou ◽  
Chad Cheetham ◽  
Elizabeth Rachel Gillard ◽  
...  
1997 ◽  
Vol 28 ◽  
pp. S49
Author(s):  
YiMu Yang ◽  
Hitoshi Ozawa ◽  
Kazunari Yuri ◽  
Mitsuhiro Kawata

2001 ◽  
Vol 203 (5) ◽  
pp. 383-391 ◽  
Author(s):  
R. Ruffoli ◽  
Maria Anita Giambelluca ◽  
Franco Giannessi ◽  
Paola Soldani ◽  
Lucia Grasso ◽  
...  

2007 ◽  
Vol 292 (2) ◽  
pp. E435-E442 ◽  
Author(s):  
G. Eda Akbas ◽  
Xiaolan Fei ◽  
Hugh S. Taylor

HOXA10 is necessary for normal development of the Müllerian duct, and continued adult expression in the uterus is necessary for female fertility. HOXA10 expression is altered by diethylstilbestrol, leading to uterine anomalies. Other endocrine disruptors may potentially lead to reproductive anomalies or dysfunction by altering HOXA10 expression. Here we investigated the effect of isoflavones on HOXA10 expression after in utero or adult exposure in the mouse. Genistein, but not diadzein, regulated HOXA10 mRNA and protein expression in the adult mouse uterus. In contrast, in utero genistein or diadzein exposure had no lasting effect on HOXA10 expression in the exposed offspring. Reporter gene expression driven by the HOXA10 estrogen response element was increased in a dose-responsive manner by genistein, but not daidzein. Neither estrogen receptor-α nor estrogen receptor-β binding to the HOXA10 estrogen response element was affected by genistein or daidzein. In utero exposure to isoflavones is unlikely to result in HOXA10-mediated developmental anomalies. Adult genistein exposure alters uterine HOXA10 expression, a potential mechanism by which this agent affects fertility.


2007 ◽  
Vol 292 (1) ◽  
pp. G419-G428 ◽  
Author(s):  
L. Wang ◽  
V. Martínez ◽  
H. Kimura ◽  
Y. Taché

Serotonin [5-hydroxytryptamine (5-HT)] acts as a modulator of colonic motility and secretion. We characterized the action of the 5-HT precursor 5-hydroxytryptophan (5-HTP) on colonic myenteric neurons and propulsive motor activity in conscious mice. Fos immunoreactivity (IR), used as a marker of neuronal activation, was monitored in longitudinal muscle/myenteric plexus whole mount preparations of the distal colon 90 min after an intraperitoneal injection of 5-HTP. Double staining of Fos IR with peripheral choline acetyltransferase (pChAT) IR or NADPH-diaphorase activity was performed. The injection of 5-HTP (0.5, 1, 5, or 10 mg/kg ip) increased fecal pellet output and fluid content in a dose-related manner, with a peak response observed within the first 15 min postinjection. 5-HTP (0.5–10 mg/kg) dose dependently increased Fos expression in myenteric neurons, with a maximal response of 9.9 ± 1.0 cells/ganglion [ P < 0.05 vs. vehicle-treated mice (2.3 ± 0.6 cells/ganglion)]. There was a positive correlation between Fos expression and fecal output. Of Fos-positive ganglionic cells, 40 ± 4% were also pChAT positive and 21 ± 5% were NADPH-diaphorase positive in response to 5-HTP, respectively. 5-HTP-induced defecation and Fos expression were completely prevented by pretreatment with the selective 5-HT4 antagonist RS-39604. These results show that 5-HTP injected peripherally increases Fos expression in different populations of cholinergic and nitrergic myenteric neurons in the distal colon and stimulates propulsive colonic motor function through 5-HT4 receptors in conscious mice. These findings suggest an important role of activation of colonic myenteric neurons in the 5-HT4 receptor-mediated colonic propulsive motor response.


2012 ◽  
Vol 444 (1) ◽  
pp. 180-183
Author(s):  
O. V. Zaitseva ◽  
V. N. Romanov ◽  
T. G. Markosova

Sign in / Sign up

Export Citation Format

Share Document