Direct estimation of cumulative integrals of the input function for Logan plot in neuroreceptor imaging using intersection searching algorithm

NeuroImage ◽  
2006 ◽  
Vol 31 ◽  
pp. T89-T90
Author(s):  
Mika Naganawa ◽  
Y. Kimura ◽  
J. Yano ◽  
K. Ishiwata
Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1705 ◽  
Author(s):  
Maria Elisa Serrano ◽  
Guillaume Becker ◽  
Mohamed Ali Bahri ◽  
Alain Seret ◽  
Nathalie Mestdagh ◽  
...  

The synaptic vesicle protein 2 (SV2) is involved in synaptic vesicle trafficking. The SV2A isoform is the most studied and its implication in epilepsy therapy led to the development of the first SV2A PET radiotracer [18F]UCB-H. The objective of this study was to evaluate in vivo, using microPET in rats, the specificity of [18F]UCB-H for SV2 isoform A in comparison with the other two isoforms (B and C) through a blocking assay. Twenty Sprague Dawley rats were pre-treated either with the vehicle, or with specific competitors against SV2A (levetiracetam), SV2B (UCB5203) and SV2C (UCB0949). The distribution volume (Vt, Logan plot, t* 15 min) was obtained with a population-based input function. The Vt analysis for the entire brain showed statistically significant differences between the levetiracetam group and the other groups (p < 0.001), but also between the vehicle and the SV2B group (p < 0.05). An in-depth Vt analysis conducted for eight relevant brain structures confirmed the statistically significant differences between the levetiracetam group and the other groups (p < 0.001) and highlighted the superior and the inferior colliculi along with the cortex as regions also displaying statistically significant differences between the vehicle and SV2B groups (p < 0.05). These results emphasize the in vivo specificity of [18F]UCB-H for SV2A against SV2B and SV2C, confirming that [18F]UCB-H is a suitable radiotracer for in vivo imaging of the SV2A proteins with PET.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 993
Author(s):  
Hidehiko Okazawa ◽  
Masamichi Ikawa ◽  
Tetsuya Tsujikawa ◽  
Akira Makino ◽  
Tetsuya Mori ◽  
...  

A noninvasive image-derived input function (IDIF) method using PET/MRI was applied to quantitative measurements of [11C] Pittsburgh compound-B (PiB) distribution volume (DV) and compared with other metrics. Fifty-three patients suspected of early dementia (71 ± 11 y) underwent 70 min [11C]PiB PET/MRI. Nineteen of them (68 ± 11 y) without head motion during the scan were enrolled in this study and compared with 16 age-matched healthy controls (CTL: 68 ± 11 y). The dynamic frames reconstructed from listmode PET data were used for DV calculation. IDIF with metabolite correction was applied to the Logan plot method, and DV was normalized into DV ratio (DVR) images using the cerebellar reference (DVRL). DVR and standardized uptake value ratio (SUVR) images were also calculated using the reference tissue graphical method (DVRr) and the 50–70 min static data with cerebellar reference, respectively. Cortical values were compared using the 3D-T1WI MRI segmentation. All patients were assigned to the early Alzheimer’s disease (eAD) group because of positive [11C]PiB accumulation. The correlations of regional values were better for DVRL vs. DVRr (r2 = 0.97) than for SUVR vs. DVRr (r2 = 0.88). However, all metrics clearly differentiated eAD from CTL with appropriate thresholds. Noninvasive quantitative [11C]PiB PET/MRI measurement provided equivalent DVRs with the two methods. SUVR images showed acceptable results despite inferior variability and image quality to DVR images.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Hoon Lee ◽  
Mattia Veronese ◽  
Jeih-San Liow ◽  
Cheryl L. Morse ◽  
Jose A. Montero Santamaria ◽  
...  

Abstract Background Previous studies found that the positron emission tomography (PET) radioligand [18F]LSN3316612 accurately quantified O-GlcNAcase in human brain using a two-tissue compartment model (2TCM). This study sought to assess kinetic model(s) as an alternative to 2TCM for quantifying [18F]LSN3316612 binding, particularly in order to generate good-quality parametric images. Methods The current study reanalyzed data from a previous study of 10 healthy volunteers who underwent both test and retest PET scans with [18F]LSN3316612. Kinetic analysis was performed at the region level with 2TCM using 120-min PET data and arterial input function, which was considered as the gold standard. Quantification was then obtained at both the region and voxel levels using Logan plot, Ichise's multilinear analysis-1 (MA1), standard spectral analysis (SA), and impulse response function at 120 min (IRF120). To avoid arterial sampling, a noninvasive relative quantification (standardized uptake value ratio (SUVR)) was also tested using the corpus callosum as a pseudo-reference region. Venous samples were also assessed to see whether they could substitute for arterial ones. Results Logan and MA1 generated parametric images of good visual quality and their total distribution volume (VT) values at both the region and voxel levels were strongly correlated with 2TCM-derived VT (r = 0.96–0.99) and showed little bias (up to − 8%). SA was more weakly correlated to 2TCM-derived VT (r = 0.93–0.98) and was more biased (~ 16%). IRF120 showed a strong correlation with 2TCM-derived VT (r = 0.96) but generated noisier parametric images. All techniques were comparable to 2TCM in terms of test–retest variability and reliability except IRF120, which gave significantly worse results. Noninvasive SUVR values were not correlated with 2TCM-derived VT, and arteriovenous equilibrium was never reached. Conclusions Compared to SA and IRF, Logan and MA1 are more suitable alternatives to 2TCM for quantifying [18F]LSN3316612 and generating good-quality parametric images.


2008 ◽  
Vol 28 (8) ◽  
pp. 1478-1490 ◽  
Author(s):  
Rainer Hinz ◽  
Sudhakar Selvaraj ◽  
N Venkatesha Murthy ◽  
Zubin Bhagwagar ◽  
Matthew Taylor ◽  
...  

The positron emission tomography (PET) ligand [11C]DASB is currently the most widely used imaging agent for quantitative studies of the serotonin transporter (SERT) in human brain. The aim of this work was to assess the effects of an intravenous infusion of 10 mg citalopram, a selective serotonin reuptake inhibitor (SSRI), before the PET scan on the kinetics of [11C]DASB in arterial plasma and in selected brain regions. Four healthy male volunteers underwent two PET scans with a mean of 523 MBq injected activity after either placebo or Citalopram infusion in a randomised design. The Citalopram infusion led to a substantial increase of the area under the curve of the metabolite-corrected arterial plasma input function. Total volumes of distribution VT were estimated applying the Logan plot to regional time—activity curves or by generating parametric maps with spectral analysis. A mean reduction of the cerebellar VT of 19% with Logan analysis and of 24% with spectral analysis was observed after Citalopram infusion, which confirms previous findings of displaceable SERT ligand binding in cerebellar grey matter. The SERT occupancy for six target regions with moderate to high binding was 60% derived from BPND and 69% derived from BPP.


1975 ◽  
Vol 23 (2) ◽  
pp. 194-196 ◽  
Author(s):  
Alfred C. Beckwith ◽  
Jerrold W. Paulis ◽  
Joseph S. Wall

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mercy I. Akerele ◽  
Sara A. Zein ◽  
Sneha Pandya ◽  
Anastasia Nikolopoulou ◽  
Susan A. Gauthier ◽  
...  

Abstract Introduction Quantitative positron emission tomography (PET) studies of neurodegenerative diseases typically require the measurement of arterial input functions (AIF), an invasive and risky procedure. This study aims to assess the reproducibility of [11C]DPA-713 PET kinetic analysis using population-based input function (PBIF). The final goal is to possibly eliminate the need for AIF. Materials and methods Eighteen subjects including six healthy volunteers (HV) and twelve Parkinson disease (PD) subjects from two [11C]-DPA-713 PET studies were included. Each subject underwent 90 min of dynamic PET imaging. Five healthy volunteers underwent a test-retest scan within the same day to assess the repeatability of the kinetic parameters. Kinetic modeling was carried out using the Logan total volume of distribution (VT) model. For each data set, kinetic analysis was performed using a patient-specific AIF (PSAIF, ground-truth standard) and then repeated using the PBIF. PBIF was generated using the leave-one-out method for each subject from the remaining 17 subjects and after normalizing the PSAIFs by 3 techniques: (a) Weightsubject×DoseInjected, (b) area under AIF curve (AUC), and (c) Weightsubject×AUC. The variability in the VT measured with PSAIF, in the test-retest study, was determined for selected brain regions (white matter, cerebellum, thalamus, caudate, putamen, pallidum, brainstem, hippocampus, and amygdala) using the Bland-Altman analysis and for each of the 3 normalization techniques. Similarly, for all subjects, the variabilities due to the use of PBIF were assessed. Results Bland-Altman analysis showed systematic bias between test and retest studies. The corresponding mean bias and 95% limits of agreement (LOA) for the studied brain regions were 30% and ± 70%. Comparing PBIF- and PSAIF-based VT estimate for all subjects and all brain regions, a significant difference between the results generated by the three normalization techniques existed for all brain structures except for the brainstem (P-value = 0.095). The mean % difference and 95% LOA is −10% and ±45% for Weightsubject×DoseInjected; +8% and ±50% for AUC; and +2% and ± 38% for Weightsubject×AUC. In all cases, normalizing by Weightsubject×AUC yielded the smallest % bias and variability (% bias = ±2%; LOA = ±38% for all brain regions). Estimating the reproducibility of PBIF-kinetics to PSAIF based on disease groups (HV/PD) and genotype (MAB/HAB), the average VT values for all regions obtained from PBIF is insignificantly higher than PSAIF (%difference = 4.53%, P-value = 0.73 for HAB; and %difference = 0.73%, P-value = 0.96 for MAB). PBIF also tends to overestimate the difference between PD and HV for HAB (% difference = 32.33% versus 13.28%) and underestimate it in MAB (%difference = 6.84% versus 20.92%). Conclusions PSAIF kinetic results are reproducible with PBIF, with variability in VT within that obtained for the test-retest studies. Therefore, VT assessed using PBIF-based kinetic modeling is clinically feasible and can be an alternative to PSAIF.


Sign in / Sign up

Export Citation Format

Share Document