logan plot
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Hoon Lee ◽  
Mattia Veronese ◽  
Jeih-San Liow ◽  
Cheryl L. Morse ◽  
Jose A. Montero Santamaria ◽  
...  

Abstract Background Previous studies found that the positron emission tomography (PET) radioligand [18F]LSN3316612 accurately quantified O-GlcNAcase in human brain using a two-tissue compartment model (2TCM). This study sought to assess kinetic model(s) as an alternative to 2TCM for quantifying [18F]LSN3316612 binding, particularly in order to generate good-quality parametric images. Methods The current study reanalyzed data from a previous study of 10 healthy volunteers who underwent both test and retest PET scans with [18F]LSN3316612. Kinetic analysis was performed at the region level with 2TCM using 120-min PET data and arterial input function, which was considered as the gold standard. Quantification was then obtained at both the region and voxel levels using Logan plot, Ichise's multilinear analysis-1 (MA1), standard spectral analysis (SA), and impulse response function at 120 min (IRF120). To avoid arterial sampling, a noninvasive relative quantification (standardized uptake value ratio (SUVR)) was also tested using the corpus callosum as a pseudo-reference region. Venous samples were also assessed to see whether they could substitute for arterial ones. Results Logan and MA1 generated parametric images of good visual quality and their total distribution volume (VT) values at both the region and voxel levels were strongly correlated with 2TCM-derived VT (r = 0.96–0.99) and showed little bias (up to − 8%). SA was more weakly correlated to 2TCM-derived VT (r = 0.93–0.98) and was more biased (~ 16%). IRF120 showed a strong correlation with 2TCM-derived VT (r = 0.96) but generated noisier parametric images. All techniques were comparable to 2TCM in terms of test–retest variability and reliability except IRF120, which gave significantly worse results. Noninvasive SUVR values were not correlated with 2TCM-derived VT, and arteriovenous equilibrium was never reached. Conclusions Compared to SA and IRF, Logan and MA1 are more suitable alternatives to 2TCM for quantifying [18F]LSN3316612 and generating good-quality parametric images.


Author(s):  
Manabu Kubota ◽  
Chie Seki ◽  
Yasuyuki Kimura ◽  
Keisuke Takahata ◽  
Hitoshi Shimada ◽  
...  

Abstract Purpose Phosphodiesterase 7 (PDE7) is an enzyme that selectively hydrolyses cyclic adenosine monophosphate, and its dysfunction is implicated in neuropsychiatric diseases. However, in vivo visualization of PDE7 in human brains has hitherto not been possible. Using the novel PET ligand 11C-MTP38, which we recently developed, we aimed to image and quantify PDE7 in living human brains. Methods Seven healthy males underwent a 90-min PET scan after injection of 11C-MTP38. We performed arterial blood sampling and metabolite analysis of plasma in six subjects to obtain a metabolite-corrected input function. Regional total distribution volumes (VTs) were estimated using compartment models, and Logan plot and Ichise multilinear analysis (MA1). We further quantified the specific radioligand binding using the original multilinear reference tissue model (MRTMO) and standardized uptake value ratio (SUVR) method with the cerebellar cortex as reference. Results PET images with 11C-MTP38 showed relatively high retentions in several brain regions, including in the striatum, globus pallidus, and thalamus, as well as fast washout from the cerebellar cortex, in agreement with the known distribution of PDE7. VT values were robustly estimated by two-tissue compartment model analysis (mean VT = 4.2 for the pallidum), Logan plot, and MA1, all in excellent agreement with each other, suggesting the reversibility of 11C-MTP38 binding. Furthermore, there were good agreements between binding values estimated by indirect method and those estimated by both MRTMO and SUVR, indicating that these methods could be useful for reliable quantification of PDE7. Because MRTMO and SUVR do not require arterial blood sampling, they are the most practical for the clinical use of 11C-MTP38-PET. Conclusion We have provided the first demonstration of PET visualization of PDE7 in human brains. 11C-MTP38 is a promising novel PET ligand for the quantitative investigation of central PDE7.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 993
Author(s):  
Hidehiko Okazawa ◽  
Masamichi Ikawa ◽  
Tetsuya Tsujikawa ◽  
Akira Makino ◽  
Tetsuya Mori ◽  
...  

A noninvasive image-derived input function (IDIF) method using PET/MRI was applied to quantitative measurements of [11C] Pittsburgh compound-B (PiB) distribution volume (DV) and compared with other metrics. Fifty-three patients suspected of early dementia (71 ± 11 y) underwent 70 min [11C]PiB PET/MRI. Nineteen of them (68 ± 11 y) without head motion during the scan were enrolled in this study and compared with 16 age-matched healthy controls (CTL: 68 ± 11 y). The dynamic frames reconstructed from listmode PET data were used for DV calculation. IDIF with metabolite correction was applied to the Logan plot method, and DV was normalized into DV ratio (DVR) images using the cerebellar reference (DVRL). DVR and standardized uptake value ratio (SUVR) images were also calculated using the reference tissue graphical method (DVRr) and the 50–70 min static data with cerebellar reference, respectively. Cortical values were compared using the 3D-T1WI MRI segmentation. All patients were assigned to the early Alzheimer’s disease (eAD) group because of positive [11C]PiB accumulation. The correlations of regional values were better for DVRL vs. DVRr (r2 = 0.97) than for SUVR vs. DVRr (r2 = 0.88). However, all metrics clearly differentiated eAD from CTL with appropriate thresholds. Noninvasive quantitative [11C]PiB PET/MRI measurement provided equivalent DVRs with the two methods. SUVR images showed acceptable results despite inferior variability and image quality to DVR images.


2020 ◽  
Author(s):  
Keyword(s):  

2019 ◽  
Vol 34 (3) ◽  
pp. 155-162
Author(s):  
Victor Romanov ◽  
Kayako Isohashi ◽  
Galal Alobthani ◽  
Rouaa Beshr ◽  
Genki Horitsugi ◽  
...  

Abstract Objective Boron neutron capture therapy (BNCT) is a noninvasive radiation therapy method for cancer treatment. In BNCT, 4-borono-2-[18F]-fluoro-L-phenylalanine (18F-FBPA) PET has been employed to estimate 10B accumulation in target tumors and normal tissues if 10B borono-L-phenylalanine (10B-BPA) is used as a boron carrier. The purpose of the current study was to evaluate the total distribution volume (Vt) of 18F-FBPA in normal organs of healthy volunteers by kinetic analysis and to estimate boron concentration in normal organs for the therapeutic dose of 10B-BPA using obtained Vt values. Methods Six healthy volunteers were injected with 18F-FBPA (3–5 MBq/kg), and 7 PET-CT scans were performed subsequently. 18F-FBPA radioactivity in whole blood and plasma was measured before, and eight times after the injection. PET images were analyzed by PMOD software. Twelve volumetric regions of interest including the brain, heart, right lung, spleen, liver, parotid salivary glands, esophagus, stomach, pancreas, intestines, and bone marrow were drawn manually for each subject and analyzed with the Logan plot and two Ichise multilinear analyses (MA1 and MA2). The better model was defined by several goodness-of-fit parameters and residual distribution. After Vt values had been derived, boron concentration was estimated in ppm for the 10B-BPA-fructose (10B-BPA-fr) dose 30 g 1 and 2 h post-injection using Vt and interpolated plasma activity data. Results The Ichise MA2 model showed the best fit among all models. Akaike Information Criterion (AIC) was the lowest for the Ichise’s MA2 in all regions (mean AIC value − 14.0) comparing to the other models (Logan plot mean AIC 31.4; Ichise MA1 model mean AIC − 4.2). Mean Vt values of the Ichise MA2 model ranged from 0.94 ± 0.14 ml/ml in the pancreas to 0.16 ± 0.02 ml/ml in the right lung. Estimated boron concentration for 10B-BPA-fr had the highest value in the pancreas (14.0 ± 1.9 ppm 1 h after, and 5.7 ± 1.7 ppm 2 h after the 18F-FBPA administration) and the lowest value in the right lung (2.4 ± 0.3 ppm 1 h, and 1.0 ± 0.3 ppm 2 h post-injection). Conclusion The 10B concentration in normal tissues was best estimated using Vt values of 18F-FBPA with the Ichise multilinear analysis 2 (MA2). Trail registry The UMIN clinical trial number: UMIN000022850.


2019 ◽  
Vol 22 ◽  
pp. 352-364
Author(s):  
Jaya Prabhakaran ◽  
Christine DeLorenzo ◽  
Francesca Zanderigo ◽  
Gitte M Knudsen ◽  
Nic Gilling ◽  
...  

Purpose: 5-HT2AR exists in high and low affinity states. Agonist PET tracers measure binding to the active high affinity site and thus provide a functionally relevant measure of the receptor. Limited in vivo data have been reported so far for a comparison of agonist versus antagonist tracers for 5-HT2AR used as a proof of principle for measurement of high and low affinity states of this receptor. We compared the in vivo binding of [11C]CIMBI-5, a 5-HT2AR agonist, and of the antagonist [11C]M100907, in monkeys and baboons. Methods: [11C]CIMBI-5 and [11C]M100907 baseline PET scans were performed in anesthetized male baboons (n=2) and male vervet monkeys (n=2) with an ECAT EXACT HR+ and GE 64-slice PET/CT Discovery VCT scanners. Blocking studies were performed in vervet monkeys by pretreatment with MDL100907 (0.5 mg/kg, i.v.) 60 minutes prior to the scan. Regional distribution volumes and binding potentials were calculated for each ROI using the likelihood estimation in graphical analysis and Logan plot, with either plasma input function or reference region as input, and simplified reference tissue model approaches. Results: PET imaging of [11C]CIMBI-5 in baboons and monkeys showed the highest binding in 5-HT2AR-rich cortical regions, while the lowest binding was observed in cerebellum, consistent with the expected distribution of 5-HT2AR. Very low free fractions and rapid metabolism were observed for [11C]CIMBI-5 in baboon plasma. Binding potential values for [11C]CIMBI-5 were 25-33% lower than those for [11C]MDL100907 in the considered brain regions. Conclusion: The lower binding potential of [11C]CIMBI-5 in comparison to [11C]MDL100907 is likely due to the preferential binding of the former to the high affinity site in vivo in contrast to the antagonist,  [11C]MDL100907, which binds to both high and low affinity sites.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1705 ◽  
Author(s):  
Maria Elisa Serrano ◽  
Guillaume Becker ◽  
Mohamed Ali Bahri ◽  
Alain Seret ◽  
Nathalie Mestdagh ◽  
...  

The synaptic vesicle protein 2 (SV2) is involved in synaptic vesicle trafficking. The SV2A isoform is the most studied and its implication in epilepsy therapy led to the development of the first SV2A PET radiotracer [18F]UCB-H. The objective of this study was to evaluate in vivo, using microPET in rats, the specificity of [18F]UCB-H for SV2 isoform A in comparison with the other two isoforms (B and C) through a blocking assay. Twenty Sprague Dawley rats were pre-treated either with the vehicle, or with specific competitors against SV2A (levetiracetam), SV2B (UCB5203) and SV2C (UCB0949). The distribution volume (Vt, Logan plot, t* 15 min) was obtained with a population-based input function. The Vt analysis for the entire brain showed statistically significant differences between the levetiracetam group and the other groups (p < 0.001), but also between the vehicle and the SV2B group (p < 0.05). An in-depth Vt analysis conducted for eight relevant brain structures confirmed the statistically significant differences between the levetiracetam group and the other groups (p < 0.001) and highlighted the superior and the inferior colliculi along with the cortex as regions also displaying statistically significant differences between the vehicle and SV2B groups (p < 0.05). These results emphasize the in vivo specificity of [18F]UCB-H for SV2A against SV2B and SV2C, confirming that [18F]UCB-H is a suitable radiotracer for in vivo imaging of the SV2A proteins with PET.


2018 ◽  
Vol 39 (6) ◽  
pp. 1138-1147 ◽  
Author(s):  
Soumen Paul ◽  
Evan Gallagher ◽  
Jeih-San Liow ◽  
Sanche Mabins ◽  
Katharine Henry ◽  
...  

Translocator protein 18 kDa (TSPO) has been widely imaged as a marker of neuroinflammation using several radioligands, including [11C]PBR28. In order to study the effects of age, sex, and obesity on TSPO binding and to determine whether this binding can be accurately assessed using fewer radio high-performance liquid chromatography (radio-HPLC) measurements of arterial blood samples, we created a database of 48 healthy subjects who had undergone [11C]PBR28 scans (23 high-affinity binders (HABs) and 25 mixed-affinity binders (MABs), 20 F/28 M, age: 40.6 ± 16.8 years). After analysis by Logan plot using 23 metabolite-corrected arterial samples, total distribution volume ( VT) was found to be 1.2-fold higher in HABs across all brain regions. Additionally, the polymorphism plot estimated nondisplaceable uptake ( VND) as 1.40 mL · cm−3, which generated a specific-to-nondisplaceable ratio ( BPND) of 1.6 ± 0.6 in HABs and 1.1 ± 0.6 in MABs. VT increased significantly with age in nearly all regions and was well estimated with radio-HPLC measurements from six arterial samples. However, VT did not correlate with body mass index and was not affected by sex. These results underscore which patient characteristics should be accounted for during [11C]PBR28 studies and suggest ways to perform such studies more easily and with fewer blood samples.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Martin Schain ◽  
Patrik Fazio ◽  
Ladislav Mrzljak ◽  
Nahid Amini ◽  
Nabil Al-Tawil ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document