scholarly journals High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention

NeuroImage ◽  
2018 ◽  
Vol 165 ◽  
pp. 222-237 ◽  
Author(s):  
Muriel Lobier ◽  
J. Matias Palva ◽  
Satu Palva
2017 ◽  
Author(s):  
Muriel Lobier ◽  
J. Matias Palva ◽  
Satu Palva

Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention.


2009 ◽  
Vol 102 (6) ◽  
pp. 3469-3480 ◽  
Author(s):  
H. M. Van Ettinger-Veenstra ◽  
W. Huijbers ◽  
T. P. Gutteling ◽  
M. Vink ◽  
J. L. Kenemans ◽  
...  

It is well known that parts of a visual scene are prioritized for visual processing, depending on the current situation. How the CNS moves this focus of attention across the visual image is largely unknown, although there is substantial evidence that preparation of an action is a key factor. Our results support the view that direct corticocortical feedback connections from frontal oculomotor areas to the visual cortex are responsible for the coupling between eye movements and shifts of visuospatial attention. Functional magnetic resonance imaging (fMRI)–guided transcranial magnetic stimulation (TMS) was applied to the frontal eye fields (FEFs) and intraparietal sulcus (IPS). A single pulse was delivered 60, 30, or 0 ms before a discrimination target was presented at, or next to, the target of a saccade in preparation. Results showed that the known enhancement of discrimination performance specific to locations to which eye movements are being prepared was enhanced by early TMS on the FEF contralateral to eye movement direction, whereas TMS on the IPS resulted in a general performance increase. The current findings indicate that the FEF affects selective visual processing within the visual cortex itself through direct feedback projections.


2020 ◽  
Vol 30 (06) ◽  
pp. 2050026 ◽  
Author(s):  
Filip Stojic ◽  
Tom Chau

Brain–computer interfaces (BCIs) can provide a means of communication to individuals with severe motor disorders, such as those presenting as locked-in. Many BCI paradigms rely on motor neural pathways, which are often impaired in these individuals. However, recent findings suggest that visuospatial function may remain intact. This study aimed to determine whether visuospatial imagery, a previously unexplored task, could be used to signify intent in an online electroencephalography (EEG)-based BCI. Eighteen typically developed participants imagined checkerboard arrow stimuli in four quadrants of the visual field in 5-s trials, while signals were collected using 16 dry electrodes over the visual cortex. In online blocks, participants received graded visual feedback based on their performance. An initial BCI pipeline (visuospatial imagery classifier I) attained a mean accuracy of [Formula: see text]% classifying rest against visuospatial imagery in online trials. This BCI pipeline was further improved using restriction to alpha band features (visuospatial imagery classifier II), resulting in a mean pseudo-online accuracy of [Formula: see text]%. Accuracies exceeded the threshold for practical BCIs in 12 participants. This study supports the use of visuospatial imagery as a real-time, binary EEG-BCI control paradigm.


2014 ◽  
Vol 26 (5) ◽  
pp. 938-954 ◽  
Author(s):  
Sabrina Walter ◽  
Cliodhna Quigley ◽  
Matthias M. Mueller

Performing a task across the left and right visual hemifields results in better performance than in a within-hemifield version of the task, termed the different-hemifield advantage. Although recent studies used transient stimuli that were presented with long ISIs, here we used a continuous objective electrophysiological (EEG) measure of competitive interactions for attentional processing resources in early visual cortex, the steady-state visual evoked potential (SSVEP). We frequency-tagged locations in each visual quadrant and at central fixation by flickering light-emitting diodes (LEDs) at different frequencies to elicit distinguishable SSVEPs. Stimuli were presented for several seconds, and participants were cued to attend to two LEDs either in one (Within) or distributed across left and right visual hemifields (Across). In addition, we introduced two reference measures: one for suppressive interactions between the peripheral LEDs by using a task at fixation where attention was withdrawn from the periphery and another estimating the upper bound of SSVEP amplitude by cueing participants to attend to only one of the peripheral LEDs. We found significantly greater SSVEP amplitude modulations in Across compared with Within hemifield conditions. No differences were found between SSVEP amplitudes elicited by the peripheral LEDs when participants attended to the centrally located LEDs compared with when peripheral LEDs had to be ignored in Across and Within trials. Attending to only one LED elicited the same SSVEP amplitude as Across conditions. Although behavioral data displayed a more complex pattern, SSVEP amplitudes were well in line with the predictions of the different-hemifield advantage account during sustained visuospatial attention.


2021 ◽  
Author(s):  
Wei Dou ◽  
Audrey Morrow ◽  
Luca Iemi ◽  
Jason Samaha

The neurogenesis of alpha-band (8-13 Hz) activity has been characterized across many different animal experiments. However, the functional role that alpha oscillations play in perception and behavior has largely been attributed to two contrasting hypotheses, with human evidence in favor of either (or both or neither) remaining sparse. On the one hand, alpha generators have been observed in relay sectors of the visual thalamus and are postulated to phasically inhibit afferent visual input in a feedforward manner 1-4. On the other hand, evidence also suggests that the direction of influence of alpha activity propagates backwards along the visual hierarchy, reflecting a feedback influence upon the visual cortex 5-9. The primary source of human evidence regarding the role of alpha phase in visual processing has been on perceptual reports 10-16, which could be modulated either by feedforward or feedback alpha activity. Thus, although these two hypotheses are not mutually exclusive, human evidence clearly supporting either one is lacking. Here, we present human subjects with large, high-contrast visual stimuli that elicit robust C1 event-related potentials (ERP), which peak between 70-80 milliseconds post-stimulus and are thought to reflect afferent primary visual cortex (V1) input 17-20. We find that the phase of ongoing alpha oscillations modulates the global field power (GFP) of the EEG during this first volley of stimulus processing (the C1 time-window). On the standard assumption 21-23 that this early activity reflects postsynaptic potentials being relayed to visual cortex from the thalamus, our results suggest that alpha phase gates visual responses during the first feed-forward sweep of processing.


2021 ◽  
Author(s):  
Alexander Zhigalov ◽  
Katharina Duecker ◽  
Ole Jensen

AbstractThe aim of this study is to uncover the network dynamics of the human visual cortex by driving it with a broadband random visual flicker. We here applied a broadband flicker (1–720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) between the visual input and the MEG response. This TRF revealed an early response in the 40–60 Hz gamma range as well as in the 8–12 Hz alpha band. While the gamma band response is novel, the latter has been termed the alpha band perceptual echo. The gamma echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was subject-specific thereby reflecting the individual dynamical properties of the early visual cortex. To understand the neuronal mechanisms generating the gamma echo, we implemented a pyramidal-interneuron gamma (PING) model that produces gamma oscillations in the presence of constant input currents. Applying a broadband input current mimicking the visual stimulation allowed us to estimate TRF between the input current and the population response (akin to the local field potentials). The TRF revealed a gamma echo that was similar to the one we observed in the MEG data. Our results suggest that the visual gamma echo can be explained by the dynamics of the PING model even in the absence of sustained gamma oscillations.


2015 ◽  
Vol 112 (26) ◽  
pp. 8112-8117 ◽  
Author(s):  
Sara Spadone ◽  
Stefania Della Penna ◽  
Carlo Sestieri ◽  
Viviana Betti ◽  
Annalisa Tosoni ◽  
...  

Fundamental problems in neuroscience today are understanding how patterns of ongoing spontaneous activity are modified by task performance and whether/how these intrinsic patterns influence task-evoked activation and behavior. We examined these questions by comparing instantaneous functional connectivity (IFC) and directed functional connectivity (DFC) changes in two networks that are strongly correlated and segregated at rest: the visual (VIS) network and the dorsal attention network (DAN). We measured how IFC and DFC during a visuospatial attention task, which requires dynamic selective rerouting of visual information across hemispheres, changed with respect to rest. During the attention task, the two networks remained relatively segregated, and their general pattern of within-network correlation was maintained. However, attention induced a decrease of correlation in the VIS network and an increase of the DAN→VIS IFC and DFC, especially in a top-down direction. In contrast, within the DAN, IFC was not modified by attention, whereas DFC was enhanced. Importantly, IFC modulations were behaviorally relevant. We conclude that a stable backbone of within-network functional connectivity topography remains in place when transitioning between resting wakefulness and attention selection. However, relative decrease of correlation of ongoing “idling” activity in visual cortex and synchronization between frontoparietal and visual cortex were behaviorally relevant, indicating that modulations of resting activity patterns are important for task performance. Higher order resting connectivity in the DAN was relatively unaffected during attention, potentially indicating a role for simultaneous ongoing activity as a “prior” for attention selection.


2020 ◽  
Author(s):  
Wendel M. Friedl ◽  
Andreas Keil

AbstractProcessing capabilities for many low-level visual features are experientially malleable, aiding sighted organisms in adapting to dynamic environments. Explicit instructions to attend a specific visual field location influence retinotopic visuocortical activity, amplifying responses to stimuli appearing at cued spatial positions. It remains undetermined, however, both how such prioritization affects surrounding non-prioritized locations, and if a given retinotopic spatial position can attain enhanced cortical representation through experience rather than instruction. This work examined visuocortical response changes as human observers learned, through differential classical conditioning, to associate specific on-screen locations with aversive outcomes. Using dense-array EEG and pupillometry, we tested the pre-registered hypotheses of either sharpening or generalization around an aversively associated location following a single conditioning session. Specifically, competing hypotheses tested if mean response changes would take the form of a gaussian (generalization) or difference-of-gaussian (sharpening) distribution over spatial positions, peaking at the viewing location paired with a noxious noise. Occipital 15 Hz steady-state visual evoked potential (ssVEP) responses were selectively heightened when viewing aversively paired locations and displayed a non-linear, difference-of-gaussian profile across neighboring locations, consistent with suppressive surround modulation of non-prioritized positions. Measures of alpha band (8 – 12.8 Hz) activity and pupil diameter also exhibited selectively heightened responses to noise-paired locations but did not evince any difference across the non-paired locations. These results indicate that visuocortical spatial representations are sharpened in response to location-specific aversive conditioning, while top-down influences indexed by alpha power reduction exhibit all-or-none modulation.Significance StatementIt is increasingly recognized that early visual cortex is not a static processor of physical features, but is instead constantly shaped by perceptual experience. It remains unclear, however, to what extent the cortical representation of many fundamental features, including visual field location, is malleable by experience. Using EEG and an aversive classical conditioning paradigm, we observed sharpening of visuocortical responses to stimuli appearing at aversively associated locations along with location-selective facilitation of response systems indexed by pupil diameter and EEG alpha power. These findings highlight the experience-dependent flexibility of retinotopic spatial representations in visual cortex, opening avenues towards novel treatment targets in disorders of attention and spatial cognition.


2021 ◽  
Vol 17 (6) ◽  
pp. e1009046
Author(s):  
Alexander Zhigalov ◽  
Katharina Duecker ◽  
Ole Jensen

The aim of this study is to uncover the network dynamics of the human visual cortex by driving it with a broadband random visual flicker. We here applied a broadband flicker (1–720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) between the visual input and the MEG response. This TRF revealed an early response in the 40–60 Hz gamma range as well as in the 8–12 Hz alpha band. While the gamma band response is novel, the latter has been termed the alpha band perceptual echo. The gamma echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was subject-specific thereby reflecting the individual dynamical properties of the early visual cortex. To understand the neuronal mechanisms generating the gamma echo, we implemented a pyramidal-interneuron gamma (PING) model that produces gamma oscillations in the presence of constant input currents. Applying a broadband input current mimicking the visual stimulation allowed us to estimate TRF between the input current and the population response (akin to the local field potentials). The TRF revealed a gamma echo that was similar to the one we observed in the MEG data. Our results suggest that the visual gamma echo can be explained by the dynamics of the PING model even in the absence of sustained gamma oscillations.


Sign in / Sign up

Export Citation Format

Share Document