scholarly journals Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project

NeuroImage ◽  
2019 ◽  
Vol 185 ◽  
pp. 750-763 ◽  
Author(s):  
Matteo Bastiani ◽  
Jesper L.R. Andersson ◽  
Lucilio Cordero-Grande ◽  
Maria Murgasova ◽  
Jana Hutter ◽  
...  
2019 ◽  
Author(s):  
Guillaume Theaud ◽  
Jean-Christophe Houde ◽  
Arnaud Boré ◽  
François Rheault ◽  
Felix Morency ◽  
...  

AbstractA diffusion MRI (dMRI) tractography processing pipeline should be: i) reproducible in immediate test-test, ii) reproducible in time, iii) efficient and iv) easy to use. Two runs of the same processing pipeline with the same input data should give the same output today, tomorrow and in 2 years. However, processing dMRI data requires a large number of steps (20+ steps) that, at this time, may not be reproducible between runs or over time. If parameters such as the number of threads or the random number generator are not carefully set in the brain extraction, registration and fiber tracking steps, the end tractography results obtained can be far from reproducible and limit brain connectivity studies. Moreover, processing can take several hours to days of computation for a large database, even more so if the steps are running sequentially.To handle these issues, we present TractoFlow, a fully automated pipeline that processes datasets from the raw diffusion weighted images (DWI) to tractography. It also outputs classical diffusion tensor imaging measures (fractional anisotropy (FA) and diffu-sivities) and several HARDI measures (Number of Fiber Orientation (NuFO), Apparent Fiber Density (AFD)). The pipeline requires a DWI and T1-weighted image as NIfTI files and b-values/b-vectors in FSL format. An optional reversed phase encoded b=0 image can also be used. This pipeline is based on two technologies: Nextflow and Singularity, as well as recommended pre-processing and processing steps from the dMRI community. In this work, the TractoFlow pipeline is evaluated on three databases and shown to be efficient and reproducible from 98% to 100% depending on parameter choices. For example, 105 subjects from the Human Connectome Project (HCP) were fully ran in twenty-five (25) hours to produce, for each subject, a whole-brain tractogram with 4 million streamlines. The contribution of this paper is to introduce the importance of a robust pipeline in terms of runtime and reproducibility over time. In the era of open data and open science, efficiency and reproducibility is critical in neuroimaging projects. Our TractoFlow pipeline is publicly available for academic research and is an important step forward for better structural brain connectivity mapping.


2017 ◽  
Author(s):  
Antonios Makropoulos ◽  
Emma C. Robinson ◽  
Andreas Schuh ◽  
Robert Wright ◽  
Sean Fitzgibbon ◽  
...  

AbstractThe Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luke Baxter ◽  
Fiona Moultrie ◽  
Sean Fitzgibbon ◽  
Marianne Aspbury ◽  
Roshni Mansfield ◽  
...  

AbstractUnderstanding the neurophysiology underlying neonatal responses to noxious stimulation is central to improving early life pain management. In this neonatal multimodal MRI study, we use resting-state and diffusion MRI to investigate inter-individual variability in noxious-stimulus evoked brain activity. We observe that cerebral haemodynamic responses to experimental noxious stimulation can be predicted from separately acquired resting-state brain activity (n = 18). Applying this prediction model to independent Developing Human Connectome Project data (n = 215), we identify negative associations between predicted noxious-stimulus evoked responses and white matter mean diffusivity. These associations are subsequently confirmed in the original noxious stimulation paradigm dataset, validating the prediction model. Here, we observe that noxious-stimulus evoked brain activity in healthy neonates is coupled to resting-state activity and white matter microstructure, that neural features can be used to predict responses to noxious stimulation, and that the dHCP dataset could be utilised for future exploratory research of early life pain system neurophysiology.


2021 ◽  
Author(s):  
Chiara Maffei ◽  
Christine Lee ◽  
Michael Planich ◽  
Manisha Ramprasad ◽  
Nivedita Ravi ◽  
...  

The development of scanners with ultra-high gradients, spearheaded by the Human Connectome Project, has led to dramatic improvements in the spatial, angular, and diffusion resolution that is feasible for in vivo diffusion MRI acquisitions. The improved quality of the data can be exploited to achieve higher accuracy in the inference of both microstructural and macrostructural anatomy. However, such high-quality data can only be acquired on a handful of Connectom MRI scanners worldwide, while remaining prohibitive in clinical settings because of the constraints imposed by hardware and scanning time. In this study, we first update the classical protocols for tractography-based, manual annotation of major white-matter pathways, to adapt them to the much greater volume and variability of the streamlines that can be produced from today's state-of-the-art diffusion MRI data. We then use these protocols to annotate 42 major pathways manually in data from a Connectom scanner. Finally, we show that, when we use these manually annotated pathways as training data for global probabilistic tractography with anatomical neighborhood priors, we can perform highly accurate, automated reconstruction of the same pathways in much lower-quality, more widely available diffusion MRI data. The outcomes of this work include both a new, comprehensive atlas of WM pathways from Connectom data, and an updated version of our tractography toolbox, TRActs Constrained by UnderLying Anatomy (TRACULA), which is trained on data from this atlas. Both the atlas and TRACULA are distributed publicly as part of FreeSurfer. We present the first comprehensive comparison of TRACULA to the more conventional, multi-region-of-interest approach to automated tractography, and the first demonstration of training TRACULA on high-quality, Connectom data to benefit studies that use more modest acquisition protocols.


Neurosurgery ◽  
2016 ◽  
Vol 79 (3) ◽  
pp. 437-455 ◽  
Author(s):  
Antonio Meola ◽  
Fang-Cheng Yeh ◽  
Wendy Fellows-Mayle ◽  
Jared Weed ◽  
Juan C. Fernandez-Miranda

Abstract BACKGROUND The brainstem is one of the most challenging areas for the neurosurgeon because of the limited space between gray matter nuclei and white matter pathways. Diffusion tensor imaging-based tractography has been used to study the brainstem structure, but the angular and spatial resolution could be improved further with advanced diffusion magnetic resonance imaging (MRI). OBJECTIVE To construct a high-angular/spatial resolution, wide-population-based, comprehensive tractography atlas that presents an anatomical review of the surgical approaches to the brainstem. METHODS We applied advanced diffusion MRI fiber tractography to a population-based atlas constructed with data from a total of 488 subjects from the Human Connectome Project-488. Five formalin-fixed brains were studied for surgical landmarks. Luxol Fast Blue-stained histological sections were used to validate the results of tractography RESULTS We acquired the tractography of the major brainstem pathways and validated them with histological analysis. The pathways included the cerebellar peduncles, corticospinal tract, corticopontine tracts, medial lemniscus, lateral lemniscus, spinothalamic tract, rubrospinal tract, central tegmental tract, medial longitudinal fasciculus, and dorsal longitudinal fasciculus. Then, the reconstructed 3-dimensional brainstem structure was sectioned at the level of classic surgical approaches, namely supracollicular, infracollicular, lateral mesencephalic, perioculomotor, peritrigeminal, anterolateral (to the medulla), and retro-olivary approaches. CONCLUSION The advanced diffusion MRI fiber tracking is a powerful tool to explore the brainstem neuroanatomy and to achieve a better understanding of surgical approaches.


2018 ◽  
Vol 2 (1) ◽  
pp. 86-105 ◽  
Author(s):  
Michael A. Powell ◽  
Javier O. Garcia ◽  
Fang-Cheng Yeh ◽  
Jean M. Vettel ◽  
Timothy Verstynen

The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample ( N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions.


2016 ◽  
Vol 10 ◽  
Author(s):  
Oscar Esteban ◽  
Emmanuel Caruyer ◽  
Alessandro Daducci ◽  
Meritxell Bach-Cuadra ◽  
María J. Ledesma-Carbayo ◽  
...  

2010 ◽  
Author(s):  
Thomas Blaffert ◽  
Rafael Wiemker ◽  
Hans Barschdorf ◽  
Sven Kabus ◽  
Tobias Klinder ◽  
...  

2020 ◽  
Author(s):  
Yassine Taoudi-Benchekroun ◽  
Daan Christiaens ◽  
Irina Grigorescu ◽  
Andreas Schuh ◽  
Maximilian Pietsch ◽  
...  

AbstractThe development of perinatal brain connectivity underpins motor, cognitive and behavioural abilities in later life. With the rise of advanced imaging methods such as diffusion MRI, the study of brain connectivity has emerged as an important tool to understand subtle alterations associated with neurodevelopmental conditions. Brain connectivity derived from diffusion MRI is complex, multi-dimensional and noisy, and hence it can be challenging to interpret on an individual basis. Machine learning methods have proven to be a powerful tool to uncover hidden patterns in such data, thus opening an opportunity for early identification of atypical development and potentially more efficient treatment.In this work, we used Deep Neural Networks and Random Forests to predict neurodevelopmental characteristics from neonatal structural connectomes, in a large sample of neonates (N = 524) derived from the developing Human Connectome Project. We achieved a highly accurate prediction of post menstrual age (PMA) at scan on term-born infants (Mean absolute error (MAE) = 0.72 weeks, r = 0.83, p<<0.001). We also achieved good accuracy when predicting gestational age at birth on a cohort of term and preterm babies scanned at term equivalent age (MAE = 2.21 weeks, r = 0.82, p<<0.001). From our models of PMA at scan for infants born at term, we computed the brain maturation index (i.e. predicted minus actual age) of individual preterm neonates and found significant correlation of this index with motor outcome at 18 months corrected age. Our results suggest that the neural substrate for later neurological functioning is detectable within a few weeks after birth in the structural connectome.


Sign in / Sign up

Export Citation Format

Share Document