Rhythmicity facilitates pitch discrimination: Differential roles of low and high frequency neural oscillations

NeuroImage ◽  
2019 ◽  
Vol 198 ◽  
pp. 31-43 ◽  
Author(s):  
Andrew Chang ◽  
Dan J. Bosnyak ◽  
Laurel J. Trainor
2013 ◽  
Vol 15 (3) ◽  
pp. 301-313 ◽  

Neural oscillations at low- and high-frequency ranges are a fundamental feature of large-scale networks. Recent evidence has indicated that schizophrenia is associated with abnormal amplitude and synchrony of oscillatory activity, in particular, at high (beta/gamma) frequencies. These abnormalities are observed during task-related and spontaneous neuronal activity which may be important for understanding the pathophysiology of the syndrome. In this paper, we shall review the current evidence for impaired beta/gamma-band oscillations and their involvement in cognitive functions and certain symptoms of the disorder. In the first part, we will provide an update on neural oscillations during normal brain functions and discuss underlying mechanisms. This will be followed by a review of studies that have examined high-frequency oscillatory activity in schizophrenia and discuss evidence that relates abnormalities of oscillatory activity to disturbed excitatory/inhibitory (E/I) balance. Finally, we shall identify critical issues for future research in this area.


2016 ◽  
Vol 116 (6) ◽  
pp. 2497-2512 ◽  
Author(s):  
Anne Kösem ◽  
Anahita Basirat ◽  
Leila Azizi ◽  
Virginie van Wassenhove

During speech listening, the brain parses a continuous acoustic stream of information into computational units (e.g., syllables or words) necessary for speech comprehension. Recent neuroscientific hypotheses have proposed that neural oscillations contribute to speech parsing, but whether they do so on the basis of acoustic cues (bottom-up acoustic parsing) or as a function of available linguistic representations (top-down linguistic parsing) is unknown. In this magnetoencephalography study, we contrasted acoustic and linguistic parsing using bistable speech sequences. While listening to the speech sequences, participants were asked to maintain one of the two possible speech percepts through volitional control. We predicted that the tracking of speech dynamics by neural oscillations would not only follow the acoustic properties but also shift in time according to the participant's conscious speech percept. Our results show that the latency of high-frequency activity (specifically, beta and gamma bands) varied as a function of the perceptual report. In contrast, the phase of low-frequency oscillations was not strongly affected by top-down control. Whereas changes in low-frequency neural oscillations were compatible with the encoding of prelexical segmentation cues, high-frequency activity specifically informed on an individual's conscious speech percept.


2018 ◽  
Author(s):  
Sophie K. Herbst ◽  
Jonas Obleser

AbstractCan human listeners use strictly implicit temporal contingencies in auditory input to form temporal predictions, and if so, how are these predictions represented endogenously? To assess this question, we implicitly manipulated foreperiods in an auditory pitch discrimination task. Unbeknownst to participants, the pitch of the standard tone could either be deterministically predictive of the onset of the target tone, or convey no predictive information. Both conditions were presented interleaved in one stream, and separated by variable inter-stimulus intervals such that there was no dominant stimulus rhythm throughout. Even though participants were unaware of the implicit temporal contingencies, pitch discrimination sensitivity (i.e. the slope of the psychometric function) increased when the onset of the target tone was predictable in time (N = 49). Concurrently recorded EEG data (N = 24) revealed that standard tones which initiated temporal predictions evoked a more negative N1 component than non-predictive standards, and were followed by an increase in delta power during the foreperiod. Furthermore, the phase angle of delta oscillations (1–3Hz) evoked by the standard tone predicted pitch discrimination sensitivity at the target tone (1.75 s later on average), which suggests that temporal predictions can be initiated by an optimized delta phase reset. In sum, we show that auditory perception benefits from implicit temporal contingencies, and provide evidence for a role of slow neural oscillations in the endogenous representation of temporal predictions, in absence of exogenously driven entrainment to rhythmic input.Significance StatementTemporal contingencies are ubiquitous in sensory environments, especially in the auditory domain, and have been shown to facilitate perception and action. Yet, how these contingencies in exogenous inputs are transformed into an endogenous representation of temporal predictions is not known. Here, we implicitly induced temporal predictability in the absence of a rhythmic input structure, that is without exogenously driven entrainment of neural oscillations. Our results show that even implicit and non-rhythmic temporal predictions are extracted and used by human observers, underlining the role of timing in sensory processing. Furthermore, our EEG results point towards an instrumental role of delta oscillations in initiating temporal predictions by an optimized phase reset in response to a temporally predictive cue.


2018 ◽  
Vol 30 (5) ◽  
pp. 770-784 ◽  
Author(s):  
Torben Ott ◽  
Stephanie Westendorff ◽  
Andreas Nieder

Neural oscillations in distinct frequency bands in the prefrontal cortex (pFC) are associated with specialized roles during cognitive control. How dopamine modulates oscillations to structure pFC functions remains unknown. We trained macaques to switch between two numerical rules and recorded local field potentials from pFC while applying dopamine receptor targeting drugs using microiontophoresis. We show that the D1 and D2 family receptors (D1Rs and D2Rs, respectively) specifically altered internally generated prefrontal oscillations, whereas sensory-evoked potentials remained unchanged. Blocking D1Rs or stimulating D2Rs increased low-frequency theta and alpha oscillations known to be involved in learning and memory. In contrast, only D1R inhibition enhanced high-frequency beta oscillations, whereas only D2R stimulation increased gamma oscillations linked to top–down and bottom–up attentional processing. These findings suggest that dopamine alters neural oscillations relevant for executive functioning through dissociable actions at the receptor level.


Perception ◽  
1972 ◽  
Vol 1 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Diane McGuinness

Four different types of hearing were investigated using 25 men and 25 women as subjects: pure tone threshold, judgment of loudness, pitch discrimination, and annoyance of a repeating stimulus. Differences were found at high frequency thresholds (above 6000 Hz), in loudness judgment, and in the annoyance test. The pitch discrimination test showed no effect of sex, but a large effect of years of musical training. None of the four hearing parameters investigated bore any statistical relationship to any other, demonstrating that these hearing types are distinct and will vary within, as well as between subjects. Personality assessment showed no relationship to any type of-hearing, with the exception of extraversion and loudness judgment, suggesting that fairly pure sensitivity factors are being measured.


2020 ◽  
Author(s):  
Luke A Johnson ◽  
Joshua E Aman ◽  
Ying Yu ◽  
David Escobar Sanabria ◽  
Jing Wang ◽  
...  

AbstractAbnormal oscillatory neural activity in the basal ganglia is thought to play a pathophysiological role in Parkinson’s disease. Many patient studies have focused on beta frequency band (13-35 Hz) local field potential activity in the subthalamic nucleus, however increasing evidence points to alterations in neural oscillations in high frequency ranges (>100 Hz) having pathophysiological relevance. Prior studies have found that power in subthalamic high frequency oscillations (HFOs) is positively correlated with dopamine tone and increased during voluntary movements, implicating these brain rhythms in normal basal ganglia function. Contrary to this idea, in the current study we present a combination of clinical and preclinical data that support the hypothesis that HFOs in the internal globus pallidus (GPi) are a pathophysiological feature of Parkinson’s disease. Spontaneous and movement-related pallidal field potentials were recorded from deep brain stimulation (DBS) leads targeting the GPi in five externalized Parkinson’s disease patients, on and off dopaminergic medication. We identified a prominent oscillatory peak centered at 200-300 Hz in the off-medication rest recordings in all patients. High frequency power increased during movement, and the magnitude of modulation was negatively correlated with bradykinesia. Moreover, high frequency oscillations were significantly attenuated in the on-medication condition, suggesting they are a feature of the parkinsonian condition. To further confirm that GPi high frequency oscillations are characteristic of dopamine depletion, we also collected field potentials from DBS leads chronically implanted in three rhesus monkeys before and after the induction of parkinsonism with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP). High frequency oscillations and their modulation during movement were not prominent in the normal condition but emerged in the parkinsonian condition in the monkey model. These data provide the first evidence demonstrating that exaggerated, movement-modulated high frequency oscillations in the internal globus pallidus are a pathophysiological feature of Parkinson’s disease, and motivate additional investigations into the functional roles of high frequency neural oscillations across the basal ganglia-thalamocortical motor circuit and their relationship to motor control in normal and diseased states. These findings also provide rationale for further exploration of these signals for electrophysiological biomarker-based device programming and stimulation strategies in patients receiving deep brain stimulation therapy.


Sign in / Sign up

Export Citation Format

Share Document