Hearing: Individual Differences in Perceiving

Perception ◽  
1972 ◽  
Vol 1 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Diane McGuinness

Four different types of hearing were investigated using 25 men and 25 women as subjects: pure tone threshold, judgment of loudness, pitch discrimination, and annoyance of a repeating stimulus. Differences were found at high frequency thresholds (above 6000 Hz), in loudness judgment, and in the annoyance test. The pitch discrimination test showed no effect of sex, but a large effect of years of musical training. None of the four hearing parameters investigated bore any statistical relationship to any other, demonstrating that these hearing types are distinct and will vary within, as well as between subjects. Personality assessment showed no relationship to any type of-hearing, with the exception of extraversion and loudness judgment, suggesting that fairly pure sensitivity factors are being measured.

2012 ◽  
Vol 23 (10) ◽  
pp. 779-788 ◽  
Author(s):  
Andrew J. Vermiglio ◽  
Sigfrid D. Soli ◽  
Daniel J. Freed ◽  
Laurel M. Fisher

Background: Speech recognition in noise testing has been conducted at least since the 1940s (Dickson et al, 1946). The ability to recognize speech in noise is a distinct function of the auditory system (Plomp, 1978). According to Kochkin (2002), difficulty recognizing speech in noise is the primary complaint of hearing aid users. However, speech recognition in noise testing has not found widespread use in the field of audiology (Mueller, 2003; Strom, 2003; Tannenbaum and Rosenfeld, 1996). The audiogram has been used as the “gold standard” for hearing ability. However, the audiogram is a poor indicator of speech recognition in noise ability. Purpose: This study investigates the relationship between pure-tone thresholds, the articulation index, and the ability to recognize speech in quiet and in noise. Research Design: Pure-tone thresholds were measured for audiometric frequencies 250–6000 Hz. Pure-tone threshold groups were created. These included a normal threshold group and slight, mild, severe, and profound high-frequency pure-tone threshold groups. Speech recognition thresholds in quiet and in noise were obtained using the Hearing in Noise Test (HINT) (Nilsson et al, 1994; Vermiglio, 2008). The articulation index was determined by using Pavlovic's method with pure-tone thresholds (Pavlovic, 1989, 1991). Study Sample: Two hundred seventy-eight participants were tested. All participants were native speakers of American English. Sixty-three of the original participants were removed in order to create groups of participants with normal low-frequency pure-tone thresholds and relatively symmetrical high-frequency pure-tone threshold groups. The final set of 215 participants had a mean age of 33 yr with a range of 17–59 yr. Data Collection and Analysis: Pure-tone threshold data were collected using the Hughson-Weslake procedure. Speech recognition data were collected using a Windows-based HINT software system. Statistical analyses were conducted using descriptive, correlational, and multivariate analysis of covariance (MANCOVA) statistics. Results: The MANCOVA analysis (where the effect of age was statistically removed) indicated that there were no significant differences in HINT performances between groups of participants with normal audiograms and those groups with slight, mild, moderate, or severe high-frequency hearing losses. With all of the data combined across groups, correlational analyses revealed significant correlations between pure-tone averages and speech recognition in quiet performance. Nonsignificant or significant but weak correlations were found between pure-tone averages and HINT thresholds. Conclusions: The ability to recognize speech in steady-state noise cannot be predicted from the audiogram. A new classification scheme of hearing impairment based on the audiogram and the speech reception in noise thresholds, as measured with the HINT, may be useful for the characterization of the hearing ability in the global sense. This classification scheme is consistent with Plomp's two aspects of hearing ability (Plomp, 1978).


2019 ◽  
Vol 23 ◽  
pp. 233121651988668 ◽  
Author(s):  
Benjamin Caswell-Midwinter ◽  
William M. Whitmer

During a hearing-aid fitting, the gain applied across frequencies is often adjusted from an initial prescription in order to meet individual needs and preferences. These gain adjustments in one or more frequency bands are commonly verified using speech in quiet (e.g., the clinician’s own voice). Such adjustments may be unreliable and inefficient if they are not discriminable. To examine what adjustments are discriminable when made to speech, this study measured the just-noticeable differences (JNDs) for gain increments in male, single-talker sentences. Sentences were presented with prescribed gains to the better ears of 41 hearing-impaired listeners. JNDs were measured at d’ of 1 for octave-band, dual-octave-band, and broadband increments using a fixed-level, same-different task. The JNDs and interquartile ranges for 0.25, 1, and 4 kHz octave-band increments were 6.3 [4.0–7.8], 6.7 [4.6–9.1], and 9.6 [7.3–12.4] dB, respectively. The JNDs and interquartile ranges for low-, mid-, and high-frequency dual-octave-band increments were 3.7 [2.5–4.6], 3.8 [2.9–4.7], and 6.8 [4.7–9.1] dB, respectively. The JND for broadband increments was 2.0 [1.5–2.7] dB. High-frequency dual-octave-band JNDs were positively correlated with high-frequency pure-tone thresholds and sensation levels, suggesting an effect of audibility for this condition. All other JNDs were independent of pure-tone threshold and sensation level. JNDs were independent of age and hearing-aid experience. These results suggest using large initial adjustments when using short sentences in a hearing-aid fitting to ensure patient focus, followed by smaller subsequent adjustments, if necessary, to ensure audibility, comfort, and stability.


2021 ◽  
Vol 11 (8) ◽  
pp. 982
Author(s):  
Ashley G. Flagge ◽  
Mary Ellen Neeley ◽  
Tara M. Davis ◽  
Victoria S. Henbest

Musical training has been shown to have a positive influence on a variety of skills, including auditory-based tasks and nonmusical cognitive and executive functioning tasks; however, because previous investigations have yielded mixed results regarding the relationship between musical training and these skills, the purpose of this study was to examine and compare the auditory processing skills of children who receive focused, daily musical training with those with more limited, generalized musical training. Sixteen typically developing children (second–fourth grade) from two different schools receiving different music curricula were assessed on measures of pitch discrimination, temporal sequencing, and prosodic awareness. The results indicated significantly better scores in pitch discrimination abilities for the children receiving daily, focused musical training (School 1) compared to students attending music class only once per week, utilizing a more generalized elementary school music curriculum (School 2). The findings suggest that more in-depth and frequent musical training may be associated with better pitch discrimination abilities in children. This finding is important given that the ability to discriminate pitch has been linked to improved phonological processing skills, an important skill for developing spoken language and literacy. Future investigations are needed to determine whether the null findings for temporal sequencing and prosodic awareness can be replicated or may be different for various grades and tasks for measuring these abilities.


1989 ◽  
Vol 98 (10) ◽  
pp. 767-771 ◽  
Author(s):  
Iain W. S. Mair ◽  
Oddbjørn Fjermedal ◽  
Einar Laukli

A comparison has been made of air conduction threshold changes up to 1 year after myringotomy, aspiration of middle ear fluid, and insertion of ventilation tubes in ten patients with bilateral and 12 with unilateral secretory otitis media (SOM). Pure tone air conduction thresholds have been analyzed in three frequency groups: Low frequency (LF; 0.25, 0.5, and 1 kHz), high frequency (HF; 2,4, and 8 kHz), and extra-high frequency (EHF; 10, 12, 14, and 16 kHz). In the LF and HF ranges, significant improvement came during the first 24 hours after intubation, while in the EHF range, threshold lowering occurred gradually over the following 2 months. Possible explanations for these findings are discussed.


2002 ◽  
Vol 13 (03) ◽  
pp. 160-168 ◽  
Author(s):  
Michael Stewart ◽  
Rebecca Pankiw ◽  
Mark E. Lehman ◽  
Thomas H. Simpson

This investigation sought to establish the prevalence of hearing loss and hearing handicap in a population of 232 recreational firearm users. Hearing handicap was calculated based on four methods using pure-tone threshold data from the American Academy of Ophthalmology and Otolaryngology, American Academy of Otolaryngology-Head and Neck Surgery, National Institute of Occupational Safety and Health, and American Speech-Language and Hearing Association in addition to the self-report Hearing Handicap Inventory for Adults-Screener (HHIA-S). Subjects (45 female and 187 male) ranging in age from 13 to 77 years (mean = 40 years, SD = 15.1) completed a short questionnaire regarding demographics and shooting practices followed by pure-tone air audiometry at Occupational Safety and Health Administration test frequencies of 500 to 6000 Hz. A total of 177 who exhibited varying degrees of hearing loss also received a face-to-face administration of the HHIA-S. Audiometric and HHIA-S results revealed that both high-frequency hearing loss and hearing handicap varied significantly as functions of age and occupation. Significant gender effects were observed audiometrically but not as a function of hearing handicap. HHIA-S scores varied significantly as a function of high-frequency (1000–4000 Hz) hearing loss. Correlation coefficients between the four different pure-tone methods of calculating hearing handicap and the self-reported HHIA-S were highest for pure-tone methods that do not employ 500 Hz in the calculation.


Author(s):  
S. A. Nayfeh ◽  
A. H. Nayfeh

Abstract We study the response of a single-degree-of-freedom system with cubic nonlinearities to an amplitude-modulated excitation whose carrier frequency is much higher than the natural frequency of the system. The only restriction on the amplitude modulation is that it contain frequencies much lower than the carrier frequency of the excitation. We apply the theory to different types of amplitude modulation and find that resonant excitation of the system may occur under some conditions.


2021 ◽  
Vol 91 (8) ◽  
pp. 887-911
Author(s):  
Manuel F. Isla ◽  
Ernesto Schwarz ◽  
Gonzalo D. Veiga ◽  
Jerónimo J. Zuazo ◽  
Mariano N. Remirez

ABSTRACT The intra-parasequence scale is still relatively unexplored territory in high-resolution sequence stratigraphy. The analysis of internal genetic units of parasequences has commonly been simplified to the definition of bedsets. Such simplification is insufficient to cover the complexity involved in the building of individual parasequences. Different types of intra-parasequence units have been previously identified and characterized in successive wave-dominated shoreface–shelf parasequences in the Lower Cretaceous Pilmatué Member of the Agrio Formation in central Neuquén Basin. Sedimentary and stratigraphic attributes such as the number of intra-parasequence units, their thickness, the proportions of facies associations in the regressive interval, the lateral extent of bounding surfaces, the degree of deepening recorded across these boundaries, and the type and lateral extent of associated transgressive deposits are quantitatively analyzed in this paper. Based on the analysis of these quantified attributes, three different scales of genetic units in parasequences are identified. 1) Bedset complexes are 10–40 m thick, basin to upper-shoreface successions, bounded by 5 to 16 km-long surfaces with a degree of deepening of one to three facies belts. These stratigraphic units represent the highest hierarchy of intra-parasequence stratigraphic units, and the vertical stacking of two or three of them typically forms an individual parasequence. 2) Bedsets are 2–20 m thick, offshore to upper-shoreface successions, bounded by up to 10 km long surfaces with a degree of deepening of zero to one facies belt. Two or three bedsets stack vertically build a bedset complex. 3) Sub-bedsets are 0.5–5 m thick, offshore transition to upper-shoreface successions, bounded by 0.5 to 2 km long surfaces with a degree of deepening of zero to one facies belt. Two or three sub-bedsets commonly stack to form bedsets. The proposed methodology indicates that the combination of thickness with the proportion of facies associations in the regressive interval of stratigraphic units can be used to discriminate between bedsets and sub-bedsets, whereas for higher ranks (bedsets and bedset complexes) the degree of deepening, lateral extent of bounding surfaces, and the characteristics of associated shell-bed deposits become more effective. Finally, the results for the Pilmatué Member are compared with other ancient and Holocene examples to improve understanding of the high-frequency evolution of wave-dominated shoreface–shelf systems.


Sign in / Sign up

Export Citation Format

Share Document