scholarly journals Gene Expression Associated with Individual Variability in Intrinsic Functional Connectivity

NeuroImage ◽  
2021 ◽  
pp. 118743
Author(s):  
Liangfang Li ◽  
Yongbin Wei ◽  
Jinbo Zhang ◽  
Junji Ma ◽  
Yangyang Yi ◽  
...  
2021 ◽  
Author(s):  
Liangfang Li ◽  
Yongbin Wei ◽  
Jinbo Zhang ◽  
Junji Ma ◽  
Yangyang Yi ◽  
...  

It has been revealed that intersubject variability (ISV) in intrinsic functional connectivity (FC) is associated with a wide variety of cognitive and behavioral performances. However, the underlying organizational principle of ISV in FC and its related gene transcriptional profiles remain unclear. Using resting-state fMRI data from the Human Connectome Project (299 participants) and microarray gene expression data from the Allen Human Brain Atlas, we conducted a transcription-neuroimaging association study to investigate the spatial configurations of ISV in intrinsic FC and their associations with gene transcriptional profiles. We found that the multimodal association cortices showed the greatest ISV in FC, while the unimodal cortices and subcortical areas showed the least ISV. Importantly, partial least squares regression analysis revealed that the transcriptional profiles of genes associated with human accelerated regions (HARs) could explain 31.29% of the variation in the spatial distribution of ISV in FC. The top-related genes in the transcriptional profiles were enriched for the development of the central nervous system, neurogenesis and the cellular components of synapse. Moreover, we observed that the effect of gene expression profile on the heterogeneous distribution of ISV in FC was significantly mediated by the cerebral blood flow configuration. These findings highlighted the spatial arrangement of ISV in FC and their coupling with variations in transcriptional profiles and cerebral blood flow supply.


2018 ◽  
Vol 29 (10) ◽  
pp. 4208-4222 ◽  
Author(s):  
Yuehua Xu ◽  
Miao Cao ◽  
Xuhong Liao ◽  
Mingrui Xia ◽  
Xindi Wang ◽  
...  

Abstract Individual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31–42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture. We observed lower individual variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range connection strength/number and this distance constraint was significantly strengthened throughout development. Our findings highlight the development and emergence of individual variability in the functional architecture of the prenatal brain, which may lay network foundations for individual behavioral differences later in life.


2017 ◽  
Vol 30 (2) ◽  
pp. 571-579 ◽  
Author(s):  
Amy Krain Roy ◽  
Randi Bennett ◽  
Jonathan Posner ◽  
Leslie Hulvershorn ◽  
F. Xavier Castellanos ◽  
...  

AbstractSevere temper outbursts (STO) in children are associated with impaired school and family functioning and may contribute to negative outcomes. These outbursts can be conceptualized as excessive frustration responses reflecting reduced emotion regulation capacity. The anterior cingulate cortex (ACC) has been implicated in negative affect as well as emotional control, and exhibits disrupted function in children with elevated irritability and outbursts. This study examined the intrinsic functional connectivity (iFC) of a region of the ACC, the anterior midcingulate cortex (aMCC), in 5- to 9-year-old children with STO (n = 20), comparing them to children with attention-deficit/hyperactivity disorder (ADHD) without outbursts (ADHD; n = 18). Additional analyses compared results to a sample of healthy children (HC; n = 18) and examined specific associations with behavioral and emotional dysregulation. Compared to the ADHD group, STO children exhibited reduced iFC between the aMCC and surrounding regions of the ACC, and increased iFC between the aMCC and precuneus. These differences were also seen between the STO and HC groups; ADHD and HC groups did not differ. Specificity analyses found associations between aMCC–ACC connectivity and hyperactivity, and between aMCC–precuneus iFC and emotion dysregulation. Disruption in aMCC networks may underlie the behavioral and emotional dysregulation characteristic of children with STO.


Sign in / Sign up

Export Citation Format

Share Document