scholarly journals Functional brain network community structure in childhood: Unfinished territories and fuzzy boundaries

NeuroImage ◽  
2021 ◽  
pp. 118843
Author(s):  
Ursula A. Tooley ◽  
Allyson P. Mackey ◽  
Danielle S. Bassett
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


2019 ◽  
Author(s):  
Steven Tompson ◽  
Ari E Kahn ◽  
Emily B. Falk ◽  
Jean M Vettel ◽  
Danielle S Bassett

Most humans have the good fortune to live their lives embedded in richly structured social groups. Yet, it remains unclear how humans acquire knowledge about these social structures to successfully navigate social relationships. Here we address this knowledge gap with an interdisciplinary neuroimaging study drawing on recent advances in network science and statistical learning. Specifically, we collected BOLD MRI data while participants learned the community structure of both social and non-social networks, in order to examine whether the learning of these two types of networks was differentially associated with functional brain network topology. From the behavioral data in both tasks, we found that learners were sensitive to the community structure of the networks, as evidenced by a slower reaction time on trials transitioning between clusters than on trials transitioning within a cluster. From the neuroimaging data collected during the social network learning task, we observed that the functional connectivity of the hippocampus and temporoparietal junction was significantly greater when transitioning between clusters than when transitioning within a cluster. Furthermore, temporoparietal regions of the default mode were more strongly connected to hippocampus, somatomotor, and visual regions during the social task than during the non-social task. Collectively, our results identify neurophysiological underpinnings of social versus non-social network learning, extending our knowledge about the impact of social context on learning processes. More broadly, this work offers an empirical approach to study the learning of social network structures, which could be fruitfully extended to other participant populations, various graph architectures, and a diversity of social contexts in future studies.


2021 ◽  
Author(s):  
Ursula A. Tooley ◽  
Danielle S. Bassett ◽  
Allyson P. Mackey

Adult cortex is organized into distributed functional communities. Yet, little is known about community architecture in childhood. Here, we address this gap by studying the community structure of cortex in 670 children aged 9-11 years from the Adolescent Brain and Cognitive Development study. Using fMRI, we first applied a data-driven partitioning algorithm to assign regions to communities, then used a model-based algorithm to further probe community interactions. Children showed similar community structure to adults in early-developing sensory and motor communities. Differences emerged in transmodal areas, manifesting in expanded limbic territory and more flexible interactions between association regions in children relative to adults. The greatest uncertainty in algorithmic assignment was localized to areas supporting attention, indicating complex undifferentiated connectivity patterns in these regions. Collectively, our findings suggest that community boundaries are not solidified in middle childhood, an instability that provides important context for children’s thoughts and behaviors during this period.


2021 ◽  
Author(s):  
Silvia Minosse ◽  
Eliseo Picchi ◽  
Francesca Di Giuliano ◽  
Loredana Sarmati ◽  
Elisabetta Teti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document