The role of utrophin and Dp71 for assembly of different dystrophin-associated protein complexes (DPCS) in the choroid plexus and microvasculature of the brain

Neuroscience ◽  
2004 ◽  
Vol 129 (2) ◽  
pp. 403-413 ◽  
Author(s):  
T. Haenggi ◽  
A. Soontornmalai ◽  
M.C. Schaub ◽  
J.-M. Fritschy
2020 ◽  
Vol 21 (13) ◽  
pp. 4760 ◽  
Author(s):  
Karol Kaiser ◽  
Vitezslav Bryja

Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment—in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP–CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.


Endocrinology ◽  
1993 ◽  
Vol 133 (5) ◽  
pp. 2116-2126 ◽  
Author(s):  
B R Southwell ◽  
W Duan ◽  
D Alcorn ◽  
C Brack ◽  
S J Richardson ◽  
...  

Endocrinology ◽  
1992 ◽  
Vol 130 (2) ◽  
pp. 933-938 ◽  
Author(s):  
J P Chanoine ◽  
S Alex ◽  
S L Fang ◽  
S Stone ◽  
J L Leonard ◽  
...  

2004 ◽  
Vol 24 (17) ◽  
pp. 7612-7621 ◽  
Author(s):  
Markos Leggas ◽  
Masashi Adachi ◽  
George L. Scheffer ◽  
Daxi Sun ◽  
Peter Wielinga ◽  
...  

ABSTRACT The role of the multidrug resistance protein MRP4/ABCC4 in vivo remains undefined. To explore this role, we generated Mrp4-deficient mice. Unexpectedly, these mice showed enhanced accumulation of the anticancer agent topotecan in brain tissue and cerebrospinal fluid (CSF). Further studies demonstrated that topotecan was an Mrp4 substrate and that cells overexpressing Mrp4 were resistant to its cytotoxic effects. We then used new antibodies to discover that Mrp4 is unique among the anionic ATP-dependent transporters in its dual localization at the basolateral membrane of the choroid plexus epithelium and in the apical membrane of the endothelial cells of the brain capillaries. Microdialysis sampling of ventricular CSF demonstrated that localization of Mrp4 at the choroid epithelium is integral to its function in limiting drug penetration into the CSF. The topotecan resistance of cells overexpressing Mrp4 and the polarized expression of Mrp4 in the choroid plexus and brain capillary endothelial cells indicate that Mrp4 has a dual role in protecting the brain from cytotoxins and suggest that the therapeutic efficacy of central nervous system-directed drugs that are Mrp4 substrates may be improved by developing Mrp4 inhibitors.


2005 ◽  
Vol 385 (2) ◽  
pp. 347-353 ◽  
Author(s):  
Crestina L. BEITES ◽  
Kristen A. CAMPBELL ◽  
William S. TRIMBLE

SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) proteins are supposed to mediate the docking and/or fusion of the vesicle with the plasma membrane. However, it is not clearly understood how this process is regulated. In a search for potential SNARE regulators, we recently identified septin 5 (Sept5) as a novel SNARE interacting protein. Septins were first identified as filamentous proteins required for cytokinesis in yeast. Several septins have now been identified in mammals but little is known about their functions. We have previously shown that Sept5 is predominantly expressed in the brain, where it associates with vesicles and membranes through its interaction with the SNARE domain of syntaxin 1A. Furthermore, Sept5 appears to inhibit exocytosis, possibly by regulating vesicle targeting and/or fusion events. To gain insight into the role of Sept5, we have mapped the Sept5 domains important for syntaxin binding. We also investigated the ability of Sept5 to bind to syntaxin when in various protein complexes. Although Sept5 cannot bind an nSec1–syntaxin complex, it can bind syntaxin in a SNARE complex. This interaction is occluded by the binding of α-SNAP, suggesting that Sept5 may regulate the availability of SNARE proteins through its interaction with syntaxin and the 7 S complex.


Author(s):  
J.E. Johnson

Although neuroaxonal dystrophy (NAD) has been examined by light and electron microscopy for years, the nature of the components in the dystrophic axons is not well understood. The present report examines nucleus gracilis and cuneatus (the dorsal column nuclei) in the brain stem of aging mice.Mice (C57BL/6J) were sacrificed by aldehyde perfusion at ages ranging from 3 months to 23 months. Several brain areas and parts of other organs were processed for electron microscopy.At 3 months of age, very little evidence of NAD can be discerned by light microscopy. At the EM level, a few axons are found to contain dystrophic material. By 23 months of age, the entire nucleus gracilis is filled with dystrophic axons. Much less NAD is seen in nucleus cuneatus by comparison. The most recurrent pattern of NAD is an enlarged profile, in the center of which is a mass of reticulated material (reticulated portion; or RP).


1969 ◽  
Vol 21 (02) ◽  
pp. 294-303 ◽  
Author(s):  
H Mihara ◽  
T Fujii ◽  
S Okamoto

SummaryBlood was injected into the brains of dogs to produce artificial haematomas, and paraffin injected to produce intracerebral paraffin masses. Cerebrospinal fluid (CSF) and peripheral blood samples were withdrawn at regular intervals and their fibrinolytic activities estimated by the fibrin plate method. Trans-form aminomethylcyclohexane-carboxylic acid (t-AMCHA) was administered to some individuals. Genera] relationships were found between changes in CSF fibrinolytic activity, area of tissue damage and survival time. t-AMCHA was clearly beneficial to those animals given a programme of administration. Tissue activator was extracted from the brain tissue after death or sacrifice for haematoma examination. The possible role of tissue activator in relation to haematoma development, and clinical implications of the results, are discussed.


Sign in / Sign up

Export Citation Format

Share Document