Neural Signatures of Working Memory in Age-related Hearing Loss

Neuroscience ◽  
2020 ◽  
Vol 429 ◽  
pp. 134-142 ◽  
Author(s):  
Stephanie Rosemann ◽  
Christiane M. Thiel
2018 ◽  
Vol 29 (01) ◽  
pp. 005-014 ◽  
Author(s):  
Cristina F. B. Murphy ◽  
Camila M. Rabelo ◽  
Marcela L. Silagi ◽  
Leticia L. Mansur ◽  
Doris E. Bamiou ◽  
...  

AbstractDespite the well-established relationship between aging and auditory processing decline, identifying the extent to which age effect is the main factor on auditory processing performance remains a great challenge due to the co-occurrence of age-related hearing loss and age-related cognitive decline as potential confounding factors.To investigate the effects of age-related hearing loss and working memory on the clinical evaluation of auditory processing of middle-aged and elderly.Cross-sectional study.A total of 77 adults between 50 and 70 yr of age were invited to participate in the study.The participants were recruited from a larger study that focused on the assessment and management of sensory and cognitive skills in elderly participants. Only participants with normal hearing or mild-to-moderate age-related hearing loss, with no evidence of cognitive, psychological, or neurological conditions were included. Speech-in-noise, dichotic digit, and frequency pattern tests were conducted as well as a working memory test. The hearing loss effect was investigated using an audibility index, calculated from the audiometric threshold. The performance on the digit span test was used to investigate working memory effects. Both hearing loss and working memory effects were investigated via correlation and regression analyses, partialling out age effects. The significance level was set at p < 0.05.The results demonstrated that, while hearing loss was associated to the speech-in-noise performance, working memory was associated to the frequency pattern and dichotic digit performances. Regression analyses confirmed the relative contribution of hearing loss to the variance in speech-in-noise and working memory test to the variance in frequency pattern and dichotic digit test performance.The performance decline of the elderly in auditory processing tests may be partially attributable to the working memory performance and, consequently, to the cognitive decline exhibited by this population. Mild-to-moderate hearing loss seems to affect performance on specific auditory processing tasks, such as speech in noise, reinforcing the idea that auditory processing disorder in the elderly might also be associated to auditory peripheral deficits.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Julia Pauquet ◽  
Christiane M. Thiel ◽  
Christian Mathys ◽  
Stephanie Rosemann

Age-related hearing loss has been associated with increased recruitment of frontal brain areas during speech perception to compensate for the decline in auditory input. This additional recruitment may bind resources otherwise needed for understanding speech. However, it is unknown how increased demands on listening interact with increasing cognitive demands when processing speech in age-related hearing loss. The current study used a full-sentence working memory task manipulating demands on working memory and listening and studied untreated mild to moderate hard of hearing ( n = 20 ) and normal-hearing age-matched participants ( n = 19 ) with functional MRI. On the behavioral level, we found a significant interaction of memory load and listening condition; this was, however, similar for both groups. Under low, but not high memory load, listening condition significantly influenced task performance. Similarly, under easy but not difficult listening conditions, memory load had a significant effect on task performance. On the neural level, as measured by the BOLD response, we found increased responses under high compared to low memory load conditions in the left supramarginal gyrus, left middle frontal gyrus, and left supplementary motor cortex regardless of hearing ability. Furthermore, we found increased responses in the bilateral superior temporal gyri under easy compared to difficult listening conditions. We found no group differences nor interactions of group with memory load or listening condition. This suggests that memory load and listening condition interacted on a behavioral level, however, only the increased memory load was reflected in increased BOLD responses in frontal and parietal brain regions. Hence, when evaluating listening abilities in elderly participants, memory load should be considered as it might interfere with the assessed performance. We could not find any further evidence that BOLD responses for the different memory and listening conditions are affected by mild to moderate age-related hearing loss.


2020 ◽  
Author(s):  
Julia Pauquet ◽  
Christiane Thiel ◽  
Christian Mathys ◽  
Stephanie Rosemann

Age-related hearing loss has been associated with increased recruitment of frontal brain areas during speech perception to compensate for the decline in auditory input. This additional recruitment may bind resources otherwise needed for understanding speech. However, it is unknown how increased demands on listening interact with increasing cognitive demands when processing speech in age-related hearing loss. The current study used a full-sentence working memory task manipulating demands on working memory and listening and studied untreated mild to moderate hard of hearing (n = 20) and normal-hearing age-matched participants (n = 19) with functional MRI. On the behavioral level, we found a significant interaction of memory load and listening condition; this was, however, similar for both groups. Under low, but not high memory load, listening condition significantly influenced task performance. Similarly, under easy but not difficult listening conditions, memory load had a significant effect on task performance. On the neural level, we found increased responses under high compared to low memory load conditions in the left supramarginal gyrus, left middle frontal gyrus and left supplementary motor cortex regardless of hearing ability. Furthermore, we found increased responses in the bilateral superior temporal gyri under easy compared to difficult listening conditions. We found no group differences nor interactions of groups with memory load or listening conditions. This suggests that memory load and listening conditions interacted on a behavioral level, however, only the increased memory load was reflected in increased neural responses in frontal and parietal brain regions. Hence, when evaluating listening abilities in elderly participants, memory load should be considered as it might interfere with the assessed performance. We could not find any further evidence that neural mechanisms of auditory speech processing are affected by mild to moderate age-related hearing loss.


2016 ◽  
Vol 17 (2) ◽  
pp. 68-73
Author(s):  
Dong-Wook Kim ◽  
Tae-Young Lee ◽  
Da-Hye Choi ◽  
Taek-Yeong Kim ◽  
Hyun-Chul Moon

2021 ◽  
Vol 22 (6) ◽  
pp. 2853
Author(s):  
Judit Szepesy ◽  
Viktória Humli ◽  
János Farkas ◽  
Ildikó Miklya ◽  
Júlia Tímár ◽  
...  

Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15–45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Alina Schulte ◽  
Christiane M. Thiel ◽  
Anja Gieseler ◽  
Maike Tahden ◽  
Hans Colonius ◽  
...  

Abstract Age-related hearing loss has been related to a compensatory increase in audio-visual integration and neural reorganization including alterations in functional resting state connectivity. How these two changes are linked in elderly listeners is unclear. The current study explored modulatory effects of hearing thresholds and audio-visual integration on resting state functional connectivity. We analysed a large set of resting state data of 65 elderly participants with a widely varying degree of untreated hearing loss. Audio-visual integration, as gauged with the McGurk effect, increased with progressing hearing thresholds. On the neural level, McGurk illusions were negatively related to functional coupling between motor and auditory regions. Similarly, connectivity of the dorsal attention network to sensorimotor and primary motor cortices was reduced with increasing hearing loss. The same effect was obtained for connectivity between the salience network and visual cortex. Our findings suggest that with progressing untreated age-related hearing loss, functional coupling at rest declines, affecting connectivity of brain networks and areas associated with attentional, visual, sensorimotor and motor processes. Especially connectivity reductions between auditory and motor areas were related to stronger audio-visual integration found with increasing hearing loss.


2021 ◽  
Vol 22 (15) ◽  
pp. 8111
Author(s):  
Kuang-Hsu Lien ◽  
Chao-Hui Yang

The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1041
Author(s):  
Jacqueline Chester ◽  
Edan Johnston ◽  
Daniel Walker ◽  
Melissa Jones ◽  
Corina Mihaela Ionescu ◽  
...  

Aging is considered a contributing factor to many diseases such as cardiovascular disease, Alzheimer’s disease, and hearing loss. Age-related hearing loss, also termed presbycusis, is one of the most common sensory impairments worldwide, affecting one in five people over 50 years of age, and this prevalence is growing annually. Associations have emerged between presbycusis and detrimental health outcomes, including social isolation and mental health. It remains largely untreatable apart from hearing aids, and with no globally established prevention strategies in the clinical setting. Hence, this review aims to explore the pathophysiology of presbycusis and potential therapies, based on a recent advancement in bile acid-based bio-nanotechnologies. A comprehensive online search was carried out using the following keywords: presbycusis, drugs, hearing loss, bile acids, nanotechnology, and more than 150 publications were considered directly relevant. Evidence of the multifaceted oxidative stress and chronic inflammation involvement in cellular damage and apoptosis that is associated with a loss of hair cells, damaged and inflamed stria vascularis, and neuronal signalling loss and apoptosis continues to emerge. New robust and effective therapies require drug delivery deeper into the various layers of the cochlea. Bile acid-based nanotechnology has gained wide interest in its permeation-enhancing ability and potential for numerous applications in treating presbycusis.


Sign in / Sign up

Export Citation Format

Share Document