Beneficial Effects of Fingolimod on Social Interaction, CNS and Peripheral Immune Response in the BTBR Mouse Model of Autism

Neuroscience ◽  
2020 ◽  
Vol 435 ◽  
pp. 22-32
Author(s):  
Roberta De Simone ◽  
Alessia Butera ◽  
Monica Armida ◽  
Antonella Pezzola ◽  
Monica Boirivant ◽  
...  
2013 ◽  
Vol 64 ◽  
pp. 268-282 ◽  
Author(s):  
J.L. Silverman ◽  
C.F. Oliver ◽  
M.N. Karras ◽  
P.T. Gastrell ◽  
J.N. Crawley

2021 ◽  
pp. 113727
Author(s):  
David J. Fairburn ◽  
Brandon A. Baiamonte ◽  
Bethany E. Gray ◽  
Katherine A. Hernandez ◽  
Jade R. Horton ◽  
...  

Proceedings ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 72
Author(s):  
Lena Trifonov ◽  
Vadim Nudelman ◽  
Michael Zhenin ◽  
Guy Cohen ◽  
Krzysztof Jozwiak ◽  
...  

TLR4, a member of the toll-like receptors (TLRs) family, serves as a pattern recognition receptor in the innate immune response to different microbial pathogens. [...]


2003 ◽  
Vol 72 (1) ◽  
pp. 138-142 ◽  
Author(s):  
Shawn Babiuk ◽  
Danuta M. Skowronski ◽  
Gaston De Serres ◽  
Kent HayGlass ◽  
Robert C. Brunham ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 1050 ◽  
Author(s):  
Ecem Kaya ◽  
David A. Smith ◽  
Claire Smith ◽  
Barry Boland ◽  
Michael Strupp ◽  
...  

Sandhoff disease is a rare neurodegenerative lysosomal storage disease associated with the storage of GM2 ganglioside in late endosomes/lysosomes. Here, we explored the efficacy of acetyl-DL-leucine (ADLL), which has been shown to improve ataxia in observational studies in patients with Niemann–Pick Type C1 and other cerebellar ataxias. We treated a mouse model of Sandhoff disease (Hexb-/-) (0.1 g/kg/day) from 3 weeks of age with this orally available drug. ADLL produced a modest but significant increase in life span, accompanied by improved motor function and reduced glycosphingolipid (GSL) storage in the forebrain and cerebellum, in particular GA2. ADLL was also found to normalize altered glucose and glutamate metabolism, as well as increasing autophagy and the reactive oxygen species (ROS) scavenger, superoxide dismutase (SOD1). Our findings provide new insights into metabolic abnormalities in Sandhoff disease, which could be targeted with new therapeutic approaches, including ADLL.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 210
Author(s):  
Yanyan Wang ◽  
Yun-Ling Tai ◽  
Derrick Zhao ◽  
Yuan Zhang ◽  
Junkai Yan ◽  
...  

Background and Aims: The disease progression of nonalcoholic fatty liver disease (NAFLD) from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) is driven by multiple factors. Berberine (BBR) is an ancient Chinese medicine and has various beneficial effects on metabolic diseases, including NAFLD/NASH. However, the underlying mechanisms remain incompletely understood due to the limitation of the NASH animal models used. Methods: A high-fat and high-fructose diet-induced mouse model of NAFLD, the best available preclinical NASH mouse model, was used. RNAseq, histological, and metabolic pathway analyses were used to identify the potential signaling pathways modulated by BBR. LC–MS was used to measure bile acid levels in the serum and liver. The real-time RT-PCR and Western blot analysis were used to validate the RNAseq data. Results: BBR not only significantly reduced hepatic lipid accumulation by modulating fatty acid synthesis and metabolism but also restored the bile acid homeostasis by targeting multiple pathways. In addition, BBR markedly inhibited inflammation by reducing immune cell infiltration and inhibition of neutrophil activation and inflammatory gene expression. Furthermore, BBR was able to inhibit hepatic fibrosis by modulating the expression of multiple genes involved in hepatic stellate cell activation and cholangiocyte proliferation. Consistent with our previous findings, BBR’s beneficial effects are linked with the downregulation of microRNA34a and long noncoding RNA H19, which are two important players in promoting NASH progression and liver fibrosis. Conclusion: BBR is a promising therapeutic agent for NASH by targeting multiple pathways. These results provide a strong foundation for a future clinical investigation.


2021 ◽  
Vol 9 (6) ◽  
pp. 1324
Author(s):  
Fernanda Raya Tonetti ◽  
Mikado Tomokiyo ◽  
Ramiro Ortiz Moyano ◽  
Sandra Quilodrán-Vega ◽  
Hikari Yamamuro ◽  
...  

Previously, we demonstrated that the nasal administration of Dolosigranulum pigrum 040417 differentially modulated the respiratory innate immune response triggered by the activation of Toll-like receptor 2 in infant mice. In this work, we aimed to evaluate the beneficial effects of D. pigrum 040417 in the context of Streptococcus pneumoniae infection and characterize the role of alveolar macrophages (AMs) in the immunomodulatory properties of this respiratory commensal bacterium. The nasal administration of D. pigrum 040417 to infant mice significantly increased their resistance to pneumococcal infection, differentially modulated respiratory cytokines production, and reduced lung injuries. These effects were associated to the ability of the 040417 strain to modulate AMs function. Depletion of AMs significantly reduced the capacity of the 040417 strain to improve both the reduction of pathogen loads and the protection against lung tissue damage. We also demonstrated that the immunomodulatory properties of D. pigrum are strain-specific, as D. pigrum 030918 was not able to modulate respiratory immunity or to increase the resistance of mice to an S. pneumoniae infection. These findings enhanced our knowledge regarding the immunological mechanisms involved in modulation of respiratory immunity induced by beneficial respiratory commensal bacteria and suggested that particular strains could be used as next-generation probiotics.


Sign in / Sign up

Export Citation Format

Share Document