On the Sun’s distance from the center and the shape of the inner halo in the Galaxy: Gaia EDR3, HST and literature globular clusters

New Astronomy ◽  
2022 ◽  
pp. 101758
Author(s):  
Evgeny Griv ◽  
Michael Gedalin ◽  
Ing-Guey Jiang
Keyword(s):  
2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


1988 ◽  
Vol 126 ◽  
pp. 663-664
Author(s):  
G. Meylan

The southern sky gives us the great opportunity to observe two among the brightest and nearest globular clusters of the Galaxy: ω Cen and 47 Tuc. For these giant clusters, we present the comparison between observations and King-Michie multi-mass dynamical models with anisotropy in the velocity dispersion. A more comprehensive description of this work is to be published (Meylan 1986a,b).


2021 ◽  
Vol 502 (2) ◽  
pp. 2828-2844
Author(s):  
Meghan E Hughes ◽  
Prashin Jethwa ◽  
Michael Hilker ◽  
Glenn van de Ven ◽  
Marie Martig ◽  
...  

ABSTRACT Dynamical models allow us to connect the motion of a set of tracers to the underlying gravitational potential, and thus to the total (luminous and dark) matter distribution. They are particularly useful for understanding the mass and spatial distribution of dark matter (DM) in a galaxy. Globular clusters (GCs) are an ideal tracer population in dynamical models, since they are bright and can be found far out into the halo of galaxies. We aim to test how well Jeans-Anisotropic-MGE (JAM) models using GCs (positions and line-of-sight velocities) as tracers can constrain the mass and radial distribution of DM haloes. For this, we use the E-MOSAICS suite of 25 zoom-in simulations of L* galaxies. We find that the DM halo properties are reasonably well recovered by the JAM models. There is, however, a strong correlation between how well we recover the mass and the radial distribution of the DM and the number of GCs in the galaxy: the constraints get exponentially worse with fewer GCs, and at least 150 GCs are needed in order to guarantee that the JAM model will perform well. We find that while the data quality (uncertainty on the radial velocities) can be important, the number of GCs is the dominant factor in terms of the accuracy and precision of the measurements. This work shows promising results for these models to be used in extragalactic systems with a sample of more than 150 GCs.


1996 ◽  
Vol 169 ◽  
pp. 669-680
Author(s):  
F.D.A. Hartwick

The spatial distribution of the outlying satellites of the Galaxy has been determined by fitting a three dimensional surface to the positions of 10 companion galaxies and 13 distant globular clusters. Both groups show a highly flattened distribution whose minor axes are aligned to within ∼ 5°. The combined group of 23 objects shows a triaxial distribution with semimajor axis extending ∼ 400 kpc. The minor axis is inclined at ∼ 76° to the Galactic poles. There is a suggestion of a nested hierarchy consisting of satellite galaxies, globular clusters, and distant halo field stars, in order of decreasing spatial extension.


2009 ◽  
Vol 5 (S266) ◽  
pp. 366-366
Author(s):  
Jura Borissova ◽  
Radostin Kurtev ◽  
Margaret M. Hanson ◽  
Leonid Georgiev ◽  
Valentin Ivanov ◽  
...  

AbstractWe are reporting some recent results from our long-term program aimed at characterizing the obscured present-day star cluster population in the Galaxy. Our goal is to expand the current census of the Milky Way's inner stellar disk to guide models seeking to understand the structure and recent star-formation history of our Galaxy. The immediate goal is to derive accurate cluster physical parameters using precise infrared photometry and spectroscopy. So far, we observed approximately 60 star cluster candidates selected from different infrared catalogs. Their nature, reddening, distance, age and mass are analyzed. Two of them, Mercer 3 and Mercer 5, are new obscured Milky Way globular clusters. Among the newly identified open clusters, the objects [DBS2003] 179, Mercer 23, Mercer 30, Mercer 70, and [DBS2003] 106 are particularly interesting because they contain massive young OB and Wolf–Rayet stars with strong emission lines.


2000 ◽  
Vol 535 (2) ◽  
pp. 759-775 ◽  
Author(s):  
Koji Takahashi ◽  
Simon F. Portegies Zwart
Keyword(s):  

1993 ◽  
Vol 153 ◽  
pp. 323-324
Author(s):  
B. Barbuy ◽  
E. Bica ◽  
S. Ortolani

We have obtained CCD BVRI colour-magnitude diagrams for a series of disk globular clusters, improving parameters and detecting a new one: Lyngå 7. Using the magnitude difference between turn-off and horizontal branch Δ(TO-HB) as an age discriminator, and their spatial distribution we compare old disk open clusters, young halo globular clusters, and metal-rich disk globular clusters, obtaining clues to the Galaxy formation process.


1994 ◽  
Vol 161 ◽  
pp. 453-459 ◽  
Author(s):  
M. Odenkirchen ◽  
R.-D. Scholz ◽  
M.J. Irwin

We present results from orbit integrations for the globular clusters M 3 and M 92. Absolute proper motions recently measured from Tautenburg Schmidt plates and a three-component mass model for the Galaxy have been used to derive the galactic orbits of these clusters. Orbital parameters and the influence of observational uncertainties on the determination of the orbits are discussed.


1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


Sign in / Sign up

Export Citation Format

Share Document