Picosecond laser generated plasma as a source of singly charged ions for external injection into an EBIS

Author(s):  
S. Kondrashev ◽  
E. Beebe ◽  
T. Kanesue ◽  
M. Okamura ◽  
R. Scott
2004 ◽  
Vol 110 ◽  
pp. 325 ◽  
Author(s):  
P. Moretto-Capelle ◽  
A. Rentenier ◽  
D. Bordenave-Montesquieu ◽  
A. Bordenave-Montesquieu

1986 ◽  
Vol 40 (4) ◽  
pp. 434-445 ◽  
Author(s):  
M. A. Vaughan ◽  
G. Horlick

In inductively coupled plasma/mass spectrometry analyte, M may be distributed among several species forms including doubly charged ions (M2+), singly charged ions (M+), mono-oxide ions (MO+), and hydroxide ions (MOH+). Detailed data are presented for Ba to illustrate the dependence of the ion count of these species and their ratios (M2+/M+, MO+/M+, and MOH+/M+) on nebulizer flow rate, plasma power, and sampling depth. Although these data are representative of most elements, many form oxides to a much greater degree than Ba; data are presented for Ti, W, and Ce to illustrate this fact. These various analyte species are important in that serious interelement interferences can occur because of spectral overlap. An extensive pair of tables indicating potential spectral interferences caused by element oxide, hydroxide, and doubly charged ions is presented.


2022 ◽  
Author(s):  
Florian Trinter ◽  
Tsveta Miteva ◽  
Miriam Weller ◽  
Alexander Hartung ◽  
Martin Richter ◽  
...  

We investigate interatomic Coulombic decay in NeKr dimers after neon inner-valence photoionization [Ne+(2s-1)] using a synchrotron light source. We measure with energy resolution the two singly charged ions of the...


2019 ◽  
Vol 14 (01) ◽  
pp. C01009-C01009
Author(s):  
S.L. Bogomolov ◽  
A.E. Bondarchenko ◽  
A.A. Efremov ◽  
Yu.E. Kostyukhov ◽  
K.I. Kuzmenkov ◽  
...  

1981 ◽  
Vol 35 (4) ◽  
pp. 380-384 ◽  
Author(s):  
Robert S. Houk ◽  
Harry J. Svec ◽  
Velmer A. Fassel

Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures ( Tion) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the ratio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The Tion values derived from measurement of Ar+2/Ar+, Ba+2/Ba+, Sr+2/Sr+, and Cd+/I+ are all greater than those expected from excitation temperatures measured by other workers. The latter three values for Tion are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Roxana M. Ghiulai ◽  
Mirela Sarbu ◽  
Constantin Ilie ◽  
Alina D. Zamfir

AbstractStructural analysis of long chain polysaccharides by electrospray ionization mass spectrometry (ESI-MS) is challenging since these molecules do not contain readily ionizable groups. Their mass spectra are dominated by singly charged ions, limiting the detection of high molecular weight species. Derivatization can enhance ionization, but analyte loss on purification decreases sensitivity. We report a method based on nanoESI-MS and MS/MS by collision induced dissociation (CID) for underivatized long chain polysaccharides. The procedure was tested on underivatized polydisperse dextrans (average molecular weight 4,000) at 2.6 kV ESI voltage and CID MS/MS at energies between 30-60 eV. 113 ions corresponding to species from Glc2 to Glc35 were detected. Ions at m/z 1,409.48, 1,107.35 and 1,438.47, assigned to [G17+2Na]2+,[G20+H+Na+K]3+ and [G35+2H+Na+K]4+, were sequenced and characterized by MS/MS. The component containing 35 Glc repeats is the longest polysaccharide chain detected by ESI-MS and structurally analyzed by MS/MS without prior derivatization and/or separation.


2005 ◽  
Vol 83 (11) ◽  
pp. 1921-1935 ◽  
Author(s):  
John A Stone ◽  
Timothy Su ◽  
Dragic Vukomanovic

The singly and doubly charged Cu(II)–DMSO complexes formed by electrospray have been examined by CAD and computation. The CAD spectra were obtained as a function of collision energy. The doubly charged ions, [Cu(DMSO)n]2+, were observed only for n ≥ 2. For n = 3, dissociation leads mainly to [Cu(DMSO)2]+ + DMSO+, with only a trace of [Cu(DMSO)2]2+. Although [Cu(DMSO)]2+ was never detected, computation shows that the n = 1 complex exists in a potential well. Loss of DMSO+ is computed to be exothermic for n = 1–3, the exothermicity decreasing as n increases. The singly charged complexes in the ESI spectra were [CuX(DMSO)n]+ (X = Cl, Br, NO3, HSO4, n = 1 or 2). The CAD spectra showed competition between electron transfer from anion to metal followed by loss of X and loss of DMSO+. Experiment and computation show that for [CuX(DMSO)]+, loss of X is the preferred decomposition at low collision energy. NBO analysis shows that electron transfer to Cu from DMSO decreases in [Cu(DMSO)n]2+ as n increases, the bonding becoming more electrostatic and less covalent. In [CuX(DMSO)n]+, the negative charge on X is much less than unity with most of the difference appearing on the DMSO ligand(s).Key words: copper–DMSO complexes, electrospray, CAD, structures.


Sign in / Sign up

Export Citation Format

Share Document