Elemental depth profiling of Cu(In,Ga)Se2 thin films by reference-free grazing incidence X-ray fluorescence analysis

Author(s):  
C. Streeck ◽  
B. Beckhoff ◽  
F. Reinhardt ◽  
M. Kolbe ◽  
B. Kanngießer ◽  
...  
1991 ◽  
Vol 35 (A) ◽  
pp. 143-150 ◽  
Author(s):  
T. C. Huang

AbstractGrazing-incidence X-ray analysis techniques which are commonly used for the nondestructive characterization of surfaces and thin films are reviewed. The X-ray reflectivity technicue is used to study surface uniformity and oxidation, layer thickness and density, interface roughness and diffusion, etc. The grazing-incidence in-plane diffraction technique is used to determine in-plane crystallography of epitaxial films. The grazing-incidence asymmetric-Bragg diffraction is used for surface phase identification and structural depth profiling determination of polycrystalline films. Typical examples to illustrate the types of information that can be obtained by the techniques are presented.


1987 ◽  
Vol 2 (4) ◽  
pp. 471-477 ◽  
Author(s):  
G. Lim ◽  
W. Parrish ◽  
C. Ortiz ◽  
M. Bellotto ◽  
M. Hart

A method using synchrotron radiation parallel beam x-ray optics with a small incidence angle α on the specimen and 2Θ-detector scanning is described for depth profiling analysis of thin films. The instrumentation is the same as used for Θ:2Θ synchrotron parallel beam powder diffractometry, except that the specimen is uncoupled from the detector. There is no profile distortion. Below the critical angle for total reflection αc, the top tens of Angstroms are sampled. Depth profiling is controlled to a few Angstroms using a small α and 0.005° steps. The penetration depth increases to several hundred Angstroms as α approaches αc. Above αc there is a rapid increase in penetration depth to a thousand Angstroms or more and the profiling cannot be sensitively controlled. At grazing incidence the peaks are shifted several tenths of a degree by the x-ray refraction and an experimental procedure for calculating the shifts is described. The method is illustrated with an analysis of iron oxide films.


2008 ◽  
Vol 595-598 ◽  
pp. 797-804 ◽  
Author(s):  
Cezarina C. Mardare ◽  
Michael Spiegel ◽  
Alan Savan ◽  
Alfred Ludwig

Ternary Mn-Co-Fe metallic thin films were deposited by RF-magnetron co-sputtering on SiO2/Si wafers and on ZMG232L (Hitachi Metals®), a special ferritic stainless steel for Solid Oxide Fuel Cell applications. The deposition was followed by heat treatment in an oxidizing atmosphere in order to convert the metallic thin films to (Mn,Co,Fe)3O4 spinel oxides. Coated and uncoated steel samples were analyzed after 1 h heat treatment in order to confirm the presence of the spinel structure on top of the steel, as well as to investigate and characterize the growth of oxides, namely (Mn,Cr)3O4 and Cr2O3, at the internal steel/coating interface. From Grazing Incidence X-ray Diffraction (GI-XRD) investigations together with Energy Dispersive X-ray analysis – Scanning Electron Microscopy and Time of Flight – Secondary Ions Mass Spectroscopy sputtering depth profiling the presence of well adherent (Mn,Co,Fe)3O4 coatings with approximately 500 nm thickness and a grain size of about 150 nm was confirmed. After the preparation annealing, some samples were heat-treated in simulated cathodic atmospheres at 800 °C for 500 h in order to assess the stability of the coatings. GI-XRD spectra still showed the presence of the protective coatings, however sputtering depth profile analysis indicated the presence of Cr on the surface.


Nanoscale ◽  
2018 ◽  
Vol 10 (13) ◽  
pp. 6177-6185 ◽  
Author(s):  
Victor Soltwisch ◽  
Philipp Hönicke ◽  
Yves Kayser ◽  
Janis Eilbracht ◽  
Jürgen Probst ◽  
...  

The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis.


2015 ◽  
Vol 21 (6) ◽  
pp. 1644-1648 ◽  
Author(s):  
Daniel Abou-Ras ◽  
Raquel Caballero ◽  
Cornelia Streeck ◽  
Burkhard Beckhoff ◽  
Jung-Hwan In ◽  
...  

AbstractIn a recent publication by Abou-Ras et al., various techniques for the analysis of elemental distribution in thin films were compared, using the example of a 2-µm thick Cu(In,Ga)Se2 thin film applied as an absorber material in a solar cell. The authors of this work found that similar relative Ga distributions perpendicular to the substrate across the Cu(In,Ga)Se2 thin film were determined by 18 different techniques, applied on samples from the same identical deposition run. Their spatial and depth resolutions, their measuring speeds, their availabilities, as well as their detection limits were discussed. The present work adds two further techniques to this comparison: laser-induced breakdown spectroscopy and grazing-incidence X-ray fluorescence analysis.


2009 ◽  
Vol 42 (6) ◽  
pp. 1158-1164 ◽  
Author(s):  
Narcizo M. Souza-Neto ◽  
Aline Y. Ramos ◽  
Hélio C. N. Tolentino ◽  
Alessandro Martins ◽  
Antonio D. Santos

A method of using X-ray absorption spectroscopy together with resolved grazing-incidence geometry for depth profiling of atomic, electronic or chemical local structures in thin films is presented. The quantitative deconvolution of thickness-dependent spectral features is performed by fully considering both scattering and absorption formalisms. Surface oxidation and local structural depth profiles in nanometric FePt films are determined, exemplifying the application of the method.


2003 ◽  
Vol 18 (1) ◽  
pp. 173-179 ◽  
Author(s):  
Maxim B. Kelman ◽  
Paul C. McIntyre ◽  
Bryan C. Hendrix ◽  
Steven M. Bilodeau ◽  
Jeffrey F. Roeder ◽  
...  

Structural properties of polycrystalline Pb(Zr0.35Ti0.65)O3 (PZT) thin films grown by metalorganic chemical vapor deposition on Ir bottom electrodes were investigated. Symmetric x-ray diffraction measurements showed that as-deposited 1500 íthick PZT films are partially tetragonal and partially rhombohedral. Cross-section scanning electron microscopy showed that these films have a polycrystalline columnar microstructure with grains extending through the thickness of the film. X-ray depth profiling using the grazing-incidence asymmetric Bragg scattering geometry suggests that each grain has a bilayer structure consisting of a near-surface region in the etragonal phase and the region at the bottom electrode interface in the rhombohedral hase. The required compatibility between the tetragonal and rhombohedral phases in he proposed layered structure of the 1500 Å PZT can explain the peak shifts observed n the symmetric x-ray diffraction results of thicker PZT films.


Sign in / Sign up

Export Citation Format

Share Document