Structural depth profiling of iron oxide thin films using grazing incidence asymmetric Bragg x‐ray diffraction

1989 ◽  
Vol 65 (12) ◽  
pp. 4763-4768 ◽  
Author(s):  
Michael F. Toney ◽  
Sean Brennan
2003 ◽  
Vol 18 (1) ◽  
pp. 173-179 ◽  
Author(s):  
Maxim B. Kelman ◽  
Paul C. McIntyre ◽  
Bryan C. Hendrix ◽  
Steven M. Bilodeau ◽  
Jeffrey F. Roeder ◽  
...  

Structural properties of polycrystalline Pb(Zr0.35Ti0.65)O3 (PZT) thin films grown by metalorganic chemical vapor deposition on Ir bottom electrodes were investigated. Symmetric x-ray diffraction measurements showed that as-deposited 1500 íthick PZT films are partially tetragonal and partially rhombohedral. Cross-section scanning electron microscopy showed that these films have a polycrystalline columnar microstructure with grains extending through the thickness of the film. X-ray depth profiling using the grazing-incidence asymmetric Bragg scattering geometry suggests that each grain has a bilayer structure consisting of a near-surface region in the etragonal phase and the region at the bottom electrode interface in the rhombohedral hase. The required compatibility between the tetragonal and rhombohedral phases in he proposed layered structure of the 1500 Å PZT can explain the peak shifts observed n the symmetric x-ray diffraction results of thicker PZT films.


2011 ◽  
Vol 44 (5) ◽  
pp. 983-990 ◽  
Author(s):  
Chris Elschner ◽  
Alexandr A. Levin ◽  
Lutz Wilde ◽  
Jörg Grenzer ◽  
Christian Schroer ◽  
...  

The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg–Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns.


1990 ◽  
Vol 37 (1) ◽  
pp. 141-144
Author(s):  
Tsunekazu Iwata ◽  
Akihiko Yamaji ◽  
Youichi Enomoto

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2765
Author(s):  
Gabriele Calabrese ◽  
Candida Pipitone ◽  
Diego Marini ◽  
Francesco Giannici ◽  
Antonino Martorana ◽  
...  

In this study, the structure and morphology, as well as time, ultraviolet radiation, and humidity stability of thin films based on newly developed 1D (PRSH)PbX3 (X = Br, I) pseudo-perovskite materials, containing 1D chains of face-sharing haloplumbate octahedra, are investigated. All films are strongly crystalline already at room temperature, and annealing does not promote further crystallization or film reorganization. The film microstructure is found to be strongly influenced by the anion type and, to a lesser extent, by the DMF/DMSO solvent volume ratio used during film deposition by spin-coating. Comparison of specular X-ray diffraction and complementary grazing incidence X-ray diffraction analysis indicates that the use of DMF/DMSO mixed solvents promotes the strengthening of a dominant 100 or 210 texturing, as compared the case of pure DMF, and that the haloplumbate chains always lie in a plane parallel to the substrate. Under specific DMF/DMSO solvent volume ratios, the prepared films are found to be highly stable in time (up to seven months under fluxing N2 and in the dark) and to highly moist conditions (up to 25 days at 78% relative humidity). Furthermore, for representative (PRSH)PbX3 films, resistance against ultraviolet exposure (λ = 380 nm) is investigated, showing complete stability after irradiation for up to 15 h at a power density of 600 mW/cm2. These results make such thin films interesting for highly stable perovskite-based (opto)electronic devices.


Sign in / Sign up

Export Citation Format

Share Document