Momentum computed tomography of low-energy charged particles produced in collisional reactions

Author(s):  
Yuezhao Zhang ◽  
Deyang Yu
2021 ◽  
Author(s):  
Sae Aizawa ◽  
Nicolas André ◽  
Ronan Modolo ◽  
Elisabeth Werner ◽  
Jim Slavin ◽  
...  

<p><span lang="EN-GB">BepiColombo is going to conduct its first Mercury flyby in October 2021. During this flyby,  plasma measurement will be obtained and bring new insights on the Hermean magnetosphere and its interaction with the Sun despite the limited field of view of the instruments during the cruise phase. Unlike Mariner-10 ion measurements will be obtained, and unlike MESSENGER, low energy electrons and ions will be measured simultaneously. In this study, we have revisited Mariner 10 and MESSENGER observations with the help of the global hybrid model LatHyS in order to understand the influence of time-variable solar wind and to constraint the plasma environment. We are able to reproduce the magnetic field observations of Mariner 10 along its trajectory with in particular two distinct signatures consisting of a quiet and disturbed state of the magnetosphere. In addition, the plasma spectrogram is also collected in the model and this enables us to detail the properties of the charged particles observed during the flyby. We will discuss all these signatures both in term of an interaction with a time-variable solar wind and localized processes occurring in the magnetosphere. We will then present the virtual sampling of both the magnetic field and plasma spectrogram along BepiColombo’s first Mercury flyby trajectory and discuss the possible signatures to be observed at that time.</span></p>


Author(s):  
F. M. Ipavich ◽  
G. Gloeckler ◽  
C. Y. Fan ◽  
L. A. Fisk ◽  
D. Hovestadt ◽  
...  

2020 ◽  
Vol 49 (1) ◽  
pp. 367-381
Author(s):  
Robel K. Gebre ◽  
Jukka Hirvasniemi ◽  
Iikka Lantto ◽  
Simo Saarakkala ◽  
Juhana Leppilahti ◽  
...  

AbstractThe incidence of low-energy acetabular fractures has increased. However, the structural factors for these fractures remain unclear. The objective of this study was to extract trabecular bone architecture and proximal femur geometry (PFG) measures from clinical computed tomography (CT) images to (1) identify possible structural risk factors of acetabular fractures, and (2) to discriminate fracture cases from controls using machine learning methods. CT images of 107 acetabular fracture subjects (25 females, 82 males) and 107 age-gender matched controls were examined. Three volumes of interest, one at the acetabulum and two at the femoral head, were extracted to calculate bone volume fraction (BV/TV), gray-level co-occurrence matrix and histogram of the gray values (GV). The PFG was defined by neck shaft angle and femoral neck axis length. Relationships between the variables were assessed by statistical mean comparisons and correlation analyses. Bayesian logistic regression and Elastic net machine learning models were implemented for classification. We found lower BV/TV at the femoral head (0.51 vs. 0.55, p = 0.012) and lower mean GV at both the acetabulum (98.81 vs. 115.33, p < 0.001) and femoral head (150.63 vs. 163.47, p = 0.005) of fracture subjects when compared to their matched controls. The trabeculae within the femoral heads of the acetabular fracture sides differed in structure, density and texture from the corresponding control sides of the fracture subjects. Moreover, the PFG and trabecular architectural variables, alone and in combination, were able to discriminate fracture cases from controls (area under the receiver operating characteristics curve 0.70 to 0.79). In conclusion, lower density in the acetabulum and femoral head with abnormal trabecular structure and texture at the femoral head, appear to be risk factors for low-energy acetabular fractures.


2010 ◽  
Vol 81 (1) ◽  
pp. 013104 ◽  
Author(s):  
Hidehito Nakamura ◽  
Hisashi Kitamura ◽  
Ryuta Hazama
Keyword(s):  

2006 ◽  
Vol 352 (4-5) ◽  
pp. 261-266 ◽  
Author(s):  
G. Voyatzis ◽  
L. Vlahos ◽  
S. Ichtiaroglou ◽  
D. Papadopoulos

2017 ◽  
Vol 742 ◽  
pp. 666-670
Author(s):  
Natalia Dadivanyan ◽  
Detlev J. Götz ◽  
Detlef Beckers ◽  
Fabio Masiello

Applications of soft (Co and Cu X-ray tube) and hard (Ag X-ray tube) radiation in computed tomography experiments on a laboratory X-ray diffractometer are presented. Using low energy (<10 keV) X-ray sources provide the possibility to investigate objects made of light (organic) materials in more detail compared to the high energy application. In case of metal or heavy element containing composites high energy (~20 keV) X-ray sources allow to obtain full 3D information on the samples without destroying them. These measurements allow both qualitative and quantitative analysis of porous materials, samples with oriented components, and solid compounds.


Sign in / Sign up

Export Citation Format

Share Document