scholarly journals The nitric oxide synthase 2 pathway is targeted by both pro- and anti-inflammatory treatments in the immature human intestine

Nitric Oxide ◽  
2017 ◽  
Vol 66 ◽  
pp. 53-61 ◽  
Author(s):  
Emanuela Ferretti ◽  
Eric Tremblay ◽  
Marie-Pier Thibault ◽  
David Grynspan ◽  
Karolina M. Burghardt ◽  
...  
2003 ◽  
Vol 368 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Patricia Fern�ndez ◽  
M. Isabel Guill�n ◽  
Amalia Ubeda ◽  
Pablo L�pez-Cremades ◽  
Enrique Aller ◽  
...  

2000 ◽  
Vol 270 (3) ◽  
pp. 846-851 ◽  
Author(s):  
Allan Sirsjö ◽  
Andreas C Gidlöf ◽  
Anneli Olsson ◽  
Hans Törmä ◽  
Mikko Ares ◽  
...  

2003 ◽  
Vol 41 (6) ◽  
pp. 897-902 ◽  
Author(s):  
Allan Sirsjö ◽  
Anders Löfving ◽  
Göran K. Hansson ◽  
Dick Wågsäter ◽  
Shinichi Tokuno ◽  
...  

2013 ◽  
Vol 288 (7) ◽  
pp. 4810-4818 ◽  
Author(s):  
Stephen R. Thom ◽  
Veena M. Bhopale ◽  
Tatyana N. Milovanova ◽  
Ming Yang ◽  
Marina Bogush ◽  
...  

2000 ◽  
Vol 68 (12) ◽  
pp. 6879-6882 ◽  
Author(s):  
Andrea M. Cooper ◽  
John E. Pearl ◽  
Jason V. Brooks ◽  
Stefan Ehlers ◽  
Ian M. Orme

ABSTRACT The interleukin-12 and gamma interferon (IFN-γ) pathway of macrophage activation plays a pivotal role in controlling tuberculosis. In the murine model, the generation of supplementary nitric oxide by the induction of the nitric oxide synthase 2 (NOS2) gene product is considered the principal antimicrobial mechanism of IFN-γ-activated macrophages. Using a low-dose aerosol-mediated infection model in the mouse, we have investigated the role of nitric oxide in controllingMycobacterium tuberculosis in the lung. In contrast to the consequences of a systemic infection, a low dose of bacteria introduced directly into the lungs of mice lacking the NOS2 gene is controlled almost as well as in intact animals. This is in contrast to the rapid progression of disease in mice lacking IFN-γ or a key member of the IFN signaling pathway, interferon regulatory factor 1. Thus while IFN-γ is pivotal in early control of bacterial growth in the lung, this control does not completely depend upon the expression of the NOS2 gene. The absence of inducible nitric oxide in the lung does, however, result in increased polymorphonuclear cell involvement and eventual necrosis in the pulmonary granulomas of the infected mice lacking the NOS2 gene.


1999 ◽  
Vol 112 (18) ◽  
pp. 3147-3155
Author(s):  
N.A. Callejas ◽  
M. Casado ◽  
L. Bosca ◽  
P. Martin-Sanz

Recently isolated trophoblasts express nitric oxide synthase 2 (NOS-2) and cyclooxygenase 2 (COX-2), decreasing the levels of the corresponding mRNAs when the cells were maintained in culture. The sustained expression of COX-2 and NOS-2 in trophoblasts was dependent on the activation of nuclear factor kappaB (NF-kappaB) since proteasome inhibitors and antioxidants that abrogated NF-kappaB activity suppressed the induction of both genes. The time-dependent fall of the mRNA levels of NOS-2 and COX-2 paralleled the inhibition of NF-kappaB, determined by electrophoretic mobility shift assays, and the increase of the IkappaBalpha and IkappaBbeta inhibitory proteins. Isolated trophoblasts synthesized reactive oxygen intermediates (ROI), a process impaired after culturing the cells, and that might be involved in the NF-kappaB activation process. Moreover, treatment of recently isolated cells with ROI scavengers suppressed the expression of COX-2 and NOS-2. Challenge of trophoblasts with interleukin-1beta up-regulated the expression of both proteins, an effect that was potentiated by lipopolysaccharide. These results indicate that the physiological expression of NOS-2 and COX-2 in trophoblasts involves a sustained activation of NF-kappaB which inhibition abrogates the inducibility of both genes.


2020 ◽  
Vol 44 (7-8) ◽  
pp. 381-387
Author(s):  
Mohammad Nur-e-Alam ◽  
Sarfaraz Ahmed ◽  
Muhammad Yousaf ◽  
Shabana I Khan ◽  
Ramzi A Mothana ◽  
...  

Scoparia dulcis L. is one of the edible widely distributed Scropholariaceae species in Asia, Africa and America. It is used in the treatment of respiratory and inflammatory diseases, diabetes, hypertension, cancer, hepatitis and tuberculosis. A phytochemical investigation on S. dulcis led to the isolation of two new acyclic diterpenes Acetic acid 6-hydroxy-2-(6-hydroxy-4-methyl-hex-4-enylidene)-4,8-dimethyl-undeca-4,8-dienyl ester (1) and Acetic acid 8-hydroxy-2-(6-hydroxy-4-methyl-hex-4-enylidene)-6,10-dimethyl-undeca-5,9-dienyl ester (2) in addition to eight known compounds (3–10), namely scopadulciol (3), 4- epi-scopadulcic acid B (4), dulcidiol (5), scopadulcic acid B (6), hymenoxin (7), glutinol (8), eupatilin (9) and 5-demethylnobiletin (10). The structures elucidation was performed using spectroscopic means, including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrum spectrometric analysis. Furthermore, the isolated compounds were investigated for their anti-inflammatory activity through the determination of inhibition of nuclear factor-kappa B activity in human chondrosarcoma (SW1353) cells, the inhibition of inducible nitric oxide synthase mouse macrophages (RAW264.7) and the decrease in cellular oxidative stress in HepG2 cells. Moreover, the cytotoxic activity was investigated against four cancer and two kidney cell lines. Among the isolates, 3, 5 and 10 showed anti-inflammatory activity in terms of inhibiting nuclear factor-kappa B and inducible nitric oxide synthase. Compounds 3–5 were the most cytotoxic towards cancer cell lines (IC50: 3.8 µM to 42.3 µM) followed by 10 (IC50: 30.9- > 64.4 µM). Cytotoxicity of compounds 3–5 was comparable to the activity of doxorubicin.


Sign in / Sign up

Export Citation Format

Share Document