Extinction of aversive taste memory homeostatically prevents the maintenance of in vivo insular cortex LTP: Calcineurin participation

2018 ◽  
Vol 154 ◽  
pp. 54-61 ◽  
Author(s):  
Alejandro Rivera-Olvera ◽  
Janikua Nelson-Mora ◽  
María E. Gonsebatt ◽  
Martha L. Escobar
2021 ◽  
Author(s):  
Elvi Gil Lievana ◽  
Gerardo Ramirez Mejia ◽  
Oscar Urrego Morales ◽  
Jorge Luis Islas ◽  
Ranier Gutierrez ◽  
...  

Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice increases the salience to facilitate consolidation of a novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to facilitate consolidation of a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience to facilitate consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Melissa S Haley ◽  
Stephen Bruno ◽  
Alfredo Fontanini ◽  
Arianna Maffei

A novel, pleasant taste stimulus becomes aversive if associated with gastric malaise, a form of learning known as conditioned taste aversion (CTA). CTA is common to vertebrates and invertebrates and is an important survival response: eating the wrong food may be deadly. CTA depends on the gustatory portion of the insular cortex (GC) and the basolateral nucleus of the amygdala (BLA) however, its synaptic underpinnings are unknown. Here we report that CTA was associated with decreased expression of immediate early genes in rat GC of both sexes, and with reduced amplitude of BLA-GC synaptic responses, pointing to long-term depression (LTD) as a mechanism for learning. Indeed, association of a novel tastant with induction of LTD at the BLA-GC input in vivo was sufficient to change the hedonic value of a taste stimulus. Our results demonstrate a direct role for amygdalocortical LTD in taste aversion learning.


2019 ◽  
Author(s):  
Vinod Menon ◽  
Gallardo Guillermo ◽  
Mark A. Pinsk ◽  
Van-Dang Nguyen ◽  
Jing-Rebecca Li ◽  
...  

AbstractThe human insular cortex is a heterogenous brain structure which plays an integrative role in guiding behavior. The cytoarchitectonic organization of the human insula has been investigated over the last century using postmortem brains but there has been little progress in noninvasive in vivo mapping of its microstructure and large-scale functional circuitry. Quantitative modeling of multi-shell diffusion MRI (dMRI) data from 440 HCP participants revealed that human insula microstructure differs significantly across its functionally defined dorsal anterior, ventral anterior, and posterior insula subdivisions that serve distinct cognitive and affective functions. The microstructural organization of the insula was mirrored in its functionally interconnected circuits with the anterior cingulate cortex that anchor the salience network, a system important for adaptive switching of cognitive control systems. Novel validation of the human insula findings came from quantitative dMRI modeling in macaques which revealed microstructural features consistent with known primate insula cytoarchitecture. Theoretical analysis and computer simulations, using realistic 3-dimensional models of neuronal morphology from postmortem tissue, demonstrated that dMRI signals reflect the cellular organization of cortical gray matter, and that these signals are sensitive to cell size and the presence of large neurons such as the von Economo neurons. Crucially, insular microstructural features were linked to behavior and predicted individual differences in cognitive control ability. Our findings open new possibilities for probing psychiatric and neurological disorders impacted by insular cortex dysfunction, including autism, schizophrenia, and fronto-temporal dementia.Statement of SignificanceThe human insular cortex is a heterogenous brain structure which plays an integrative role in identifying salient sensory, affective, and cognitive cues for guiding attention and behavior. It is also is one of the most widely activated brain regions in all of human neuroimaging research. Here we use novel quantitative tools with in vivo diffusion MRI in large group (N=440) of individuals to uncover several unique microstructural features of the human insula and its macrofunctional circuits. Crucially, microstructural properties of the insular cortex predicted human cognitive control abilities, in agreement with its crucial role in adaptive human behaviors. Our findings open new possibilities for probing psychiatric and neurological disorders impacted by insular dysfunction, including autism, schizophrenia, and fronto-temporal dementia.


2015 ◽  
Vol 119 ◽  
pp. 77-84 ◽  
Author(s):  
Jian-You Lin ◽  
Joe Arthurs ◽  
Steve Reilly

2016 ◽  
Vol 634 ◽  
pp. 146-152 ◽  
Author(s):  
Jeongsoo Han ◽  
Myeounghoon Cha ◽  
Minjee Kwon ◽  
Seong-Karp Hong ◽  
Sun Joon Bai ◽  
...  

2010 ◽  
Vol 278 (1713) ◽  
pp. 1864-1872 ◽  
Author(s):  
Raphael Doenlen ◽  
Ute Krügel ◽  
Timo Wirth ◽  
Carsten Riether ◽  
Andrea Engler ◽  
...  

Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or ‘senses’ peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions.


2009 ◽  
Vol 29 (4) ◽  
pp. 1046-1051 ◽  
Author(s):  
J. A. McCabe ◽  
P. N. Tobler ◽  
W. Schultz ◽  
A. Dickinson ◽  
V. Lupson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document