scholarly journals Abnormalities in brain structure and biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized 1H MRS

2015 ◽  
Vol 25 (10) ◽  
pp. 764-772 ◽  
Author(s):  
Su Xu ◽  
Da Shi ◽  
Stephen J.P. Pratt ◽  
Wenjun Zhu ◽  
Andrew Marshall ◽  
...  
2012 ◽  
Vol 113 (5) ◽  
pp. 808-816 ◽  
Author(s):  
Su Xu ◽  
Stephen J. P. Pratt ◽  
Espen E. Spangenburg ◽  
Richard M. Lovering

Skeletal muscle injury is often assessed by clinical findings (history, pain, tenderness, strength loss), by imaging, or by invasive techniques. The purpose of this work was to determine if in vivo proton magnetic resonance spectroscopy (1H MRS) could reveal metabolic changes in murine skeletal muscle after contraction-induced injury. We compared findings in the tibialis anterior muscle from both healthy wild-type (WT) muscles (C57BL/10 mice) and dystrophic ( mdx mice) muscles (an animal model for human Duchenne muscular dystrophy) before and after contraction-induced injury. A mild in vivo eccentric injury protocol was used due to the high susceptibility of mdx muscles to injury. As expected, mdx mice sustained a greater loss of force (81%) after injury compared with WT (42%). In the uninjured muscles, choline (Cho) levels were 47% lower in the mdx muscles compared with WT muscles. In mdx mice, taurine levels decreased 17%, and Cho levels increased 25% in injured muscles compared with uninjured mdx muscles. Intramyocellular lipids and total muscle lipid levels increased significantly after injury but only in WT. The increase in lipid was confirmed using a permeable lipophilic fluorescence dye. In summary, loss of torque after injury was associated with alterations in muscle metabolite levels that may contribute to the overall injury response in mdx mice. These results show that it is possible to obtain meaningful in vivo 1H MRS regarding skeletal muscle injury.


2021 ◽  
Author(s):  
Fumiaki Nin ◽  
Samuel Choi ◽  
Takeru Ota ◽  
Zhang Qi ◽  
Hiroshi Hibino

AbstractSound evokes sub-nanoscale vibration within the sensory epithelium. The epithelium contains not only immotile cells but also contractile outer hair cells (OHCs) that actively shrink and elongate synchronously with the sound. However, the in vivo motion of OHCs has remained undetermined. The aim of this work is to perform high-resolution and -accuracy vibrometry in live guinea pigs with an SC-introduced spectral-domain optical coherence tomography system (SD-OCT). In this study, to reveal the effective contribution of SC source in the recording of the low reflective materials with the short total acquisition time, we compare the performances of the SC-introduced SD-OCT (SCSD-OCT) to that of the conventional SD-OCT. As inanimate comparison objects, we record a mirror, a piezo actuator, and glass windows. For the measurements in biological materials, we use in/ex vivo guinea pig cochleae. Our study achieved the optimization of a SD-OCT system for high-resolution in vivo vibrometry in the cochlear sensory epithelium, termed the organ of Corti, in mammalian cochlea. By introducing a supercontinuum (SC) light source and reducing the total acquisition time, we improve the axial resolution and overcome the difficulty in recording the low reflective material in the presence of biological noise. The high power of the SC source enables the system to achieve a spatial resolution of 1.72 ± 0.00 μm on a mirror and reducing the total acquisition time contributes to the high spatial accuracy of sub-nanoscale vibrometry. Our findings reveal the vibrations at the apical/basal region of OHCs and the extracellular matrix, basilar membrane.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hansol Lee ◽  
Myung Jun Lee ◽  
Eun-Joo Kim ◽  
Gi Yeong Huh ◽  
Jae-Hyeok Lee ◽  
...  

AbstractAbnormal iron accumulation around the substantia nigra (SN) is a diagnostic indicator of Parkinsonism. This study aimed to identify iron-related microarchitectural changes around the SN of brains with progressive supranuclear palsy (PSP) via postmortem validations and in vivo magnetic resonance imaging (MRI). 7 T high-resolution MRI was applied to two postmortem brain tissues, from one normal brain and one PSP brain. Histopathological examinations were performed to demonstrate the molecular origin of the high-resolution postmortem MRI findings, by using ferric iron staining, myelin staining, and two-dimensional laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) imaging. In vivo iron-related MRI was performed on five healthy controls, five patients with Parkinson’s disease (PD), and five patients with PSP. In the postmortem examination, excessive iron deposition along the myelinated fiber at the anterior SN and third cranial nerve (oculomotor nerve) fascicles of the PSP brain was verified by LA-ICP-MS. This region corresponded to those with high R2* values and positive susceptibility from quantitative susceptibility mapping (QSM), but was less sensitive in Perls’ Prussian blue staining. In in vivo susceptibility-weighted imaging, hypointense pixels were observed in the region between the SN and red nucleus (RN) in patients with PSP, but not in healthy controls and patients with PD. R2* and QSM values of such region were significantly higher in patients with PSP compared to those in healthy controls and patients with PD as well (vs. healthy control: p = 0.008; vs. PD: p = 0.008). Thus, excessive iron accumulation along the myelinated fibers at the anterior SN and oculomotor nerve fascicles may be a pathological characteristic and crucial MR biomarker in a brain with PSP.


2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. i17-i17
Author(s):  
Puneet Bagga ◽  
Laurie Rich ◽  
Mohammad Haris ◽  
Neil Wilson ◽  
Mitch Schnall ◽  
...  

Abstract Most cancers, including glioblastomas (GBMs), rely extensively on glycolysis to support growth, proliferation, and survival. A hallmark of this elevated glycolysis is overexpression of Lactate dehydrogenase-A (LDHA) protein leading to increased uptake of glucose and overproduction of lactate. Various clinical trials using LDHA as a target for diagnosis and treatment have yielded encouraging results. However, in vivo monitoring of LDHA expression has been challenging due to either requirement of administration of radioactive substrates or specialized hardware. In this presentation, we will demonstrate a new method-quantitative exchanged-label turnover MRS (QELT, or simply qMRS)-that increases the sensitivity of magnetic resonance-based metabolic mapping without the requirement for specialized hardware. qMRS relies on the administration of deuterated (2H-labeled) substrates to track the production of downstream metabolites. Since 2H is invisible on 1H MRS, replacement of 1H with 2H due to metabolic turnover leads to an overall reduction in 1H MRS signal for the corresponding metabolites. We applied our qMRS technique to monitor the rate of lactate production in a preclinical GBM model. Infusion of [6,6’-2H2]glucose led to downstream deuterium labeling of lactate, thereby resulting in a reduction in the 1.33 ppm lactate-CH3 peak on 1H MRS over time. The subtraction of post-administration 1H MR spectra from the pre-infusion spectra aided in the determination of the kinetics of the lactate turnover. We believe that the detection and quantification of lactate production kinetics may provide crucial information regarding tumor LDHA expression non-invasively in GBMs without requiring biopsies. Hence, qMRS is expected to open up new opportunities to probe LDHA expression differences in a variety of gliomas, including GBMs and astrocytomas. This method takes advantage of the universal availability and ease of implementation of 1H MRS on all clinical and preclinical magnetic resonance scanners.


NeuroImage ◽  
2021 ◽  
pp. 118260
Author(s):  
Wei Qin ◽  
Qi Gan ◽  
Lei Yang ◽  
Yongchao Wang ◽  
Weizhi Qi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adeyemi T. Kayode ◽  
Fehintola V. Ajogbasile ◽  
Kazeem Akano ◽  
Jessica N. Uwanibe ◽  
Paul E. Oluniyi ◽  
...  

AbstractIn 2005, the Nigerian Federal Ministry of Health revised the treatment policy for uncomplicated malaria with the introduction of artemisinin-based combination therapies (ACTs). This policy change discouraged the use of Sulphadoxine-pyrimethamine (SP) as the second-line treatment of uncomplicated falciparum malaria. However, SP is used as an intermittent preventive treatment of malaria in pregnancy (IPTp) and seasonal malaria chemoprevention (SMC) in children aged 3–59 months. There have been increasing reports of SP resistance especially in the non-pregnant population in Nigeria, thus, the need to continually monitor the efficacy of SP as IPTp and SMC by estimating polymorphisms in dihydropteroate synthetase (dhps) and dihydrofolate reductase (dhfr) genes associated with SP resistance. The high resolution-melting (HRM) assay was used to investigate polymorphisms in codons 51, 59, 108 and 164 of the dhfr gene and codons 437, 540, 581 and 613 of the dhps gene. DNA was extracted from 271 dried bloodspot filter paper samples obtained from children (< 5 years old) with uncomplicated malaria. The dhfr triple mutant I51R59N108, dhps double mutant G437G581 and quadruple dhfr I51R59N108 + dhps G437 mutant haplotypes were observed in 80.8%, 13.7% and 52.8% parasites, respectively. Although the quintuple dhfr I51R59N108 + dhps G437E540 and sextuple dhfr I51R59N108 + dhps G437E540G581 mutant haplotypes linked with in-vivo and in-vitro SP resistance were not detected, constant surveillance of these haplotypes should be done in the country to detect any change in prevalence.


Sign in / Sign up

Export Citation Format

Share Document