scholarly journals Uniqueness and energy balance for isentropic Euler equation with stochastic forcing

2021 ◽  
Vol 61 ◽  
pp. 103328
Author(s):  
Shyam Sundar Ghoshal ◽  
Animesh Jana ◽  
Barun Sarkar
2015 ◽  
Vol 28 (21) ◽  
pp. 8379-8395 ◽  
Author(s):  
Kristoffer Rypdal ◽  
Martin Rypdal ◽  
Hege-Beate Fredriksen

Abstract A two-dimensional stochastic–diffusive energy balance model (EBM) formulated on a sphere by G. R. North et al. is explored and generalized. Instantaneous and frequency-dependent spatial autocorrelation functions and local temporal power spectral densities are computed for local sites and for spatially averaged surface temperature signals up to the global scale. On time scales up to the relaxation time scale given by the effective heat capacities of the ocean mixed layer and land surface, respectively, scaling features are obtained that are reminiscent of what can be derived from the observed temperature field. On longer time scales, however, the EBM predicts a transition to a white-noise scaling, which is not reflected in the observed records. A fractional generalization, which can be considered as a spatial generalization of the zero-dimensional, long-memory EBM of M. Rypdal and K. Rypdal, is proposed and explored. It is demonstrated that this generalized model describes qualitatively the main correlation characteristics of the temperature field reported in the literature and those derived herein from 500-yr-long control simulations of the NorESM Earth system model. A further generalization of the model, to include long-term persistence in the stochastic forcing, is also discussed.


1994 ◽  
Vol 144 ◽  
pp. 315-321 ◽  
Author(s):  
M. G. Rovira ◽  
J. M. Fontenla ◽  
J.-C. Vial ◽  
P. Gouttebroze

AbstractWe have improved previous model calculations of the prominence-corona transition region including the effect of the ambipolar diffusion in the statistical equilibrium and energy balance equations. We show its influence on the different parameters that characterize the resulting prominence theoretical structure. We take into account the effect of the partial frequency redistribution (PRD) in the line profiles and total intensities calculations.


1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


Author(s):  
B Otto ◽  
H Rochlitz ◽  
M Möhlig ◽  
L Burget ◽  
J Kampe ◽  
...  
Keyword(s):  

2005 ◽  
Vol 43 (10) ◽  
Author(s):  
B Otto ◽  
F Lippl ◽  
P Pfluger ◽  
J Spranger ◽  
U Cuntz ◽  
...  
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 19-24
Author(s):  
Sakhr Mohammed Sultan ◽  
Chih Ping Tso ◽  
Ervina Efzan Mohd Noor ◽  
Fadhel Mustafa Ibrahim ◽  
Saqaff Ahmed Alkaff

Photovoltaic Thermal Solar Collector (PVT) is a hybrid technology used to produce electricity and heat simultaneously. Current enhancements in PVT are to increase the electrical and thermal efficiencies. Many PVT factors such as type of absorber, thermal conductivity, type of PV module and operating conditions are important parameters that can control the PVT performance. In this paper, an analytical model, using energy balance equations, is studied for PVT with an improved parallel flow absorber. The performance is calculated for a typical sunny weather in Malaysia. It was found that the maximum electrical and thermal efficiencies are 12.9 % and 62.6 %, respectively. The maximum outlet water temperature is 59 oC.


2019 ◽  
Vol 139 (5) ◽  
pp. 302-308 ◽  
Author(s):  
Shinji Yamamoto ◽  
Soshi Iwata ◽  
Toru Iwao ◽  
Yoshiyasu Ehara

Sign in / Sign up

Export Citation Format

Share Document