Distribution of different substances inside cerebrospinal and interstitial fluid compartments

2016 ◽  
Vol 22 (1) ◽  
pp. 13-14
Author(s):  
Klarica Marijan ◽  
Radoš Milan ◽  
Orešković Darko
1977 ◽  
Vol 42 (2) ◽  
pp. 144-149 ◽  
Author(s):  
M. H. Gee ◽  
N. C. Staub

In five anesthetized, closed-thorax dogs, we measured net tracer albumin (RISA) uptake rate from an isosmotic buffer-filled lung lobe for 6 h; 3 h at each of two different alveolar RISA concentrations. We calculated the permeability coefficient assuming a two-compartment (alveolar fluid and plasma) diffusional model. In every dog the permeability coefficient decreased after the alveolar RISA concentration was increased. After freezing the lungs terminally, we found the fluid-filled lobes had extensive free interstitial fluid perivascular cuffs, indicating a third compartment filled by bulk flow. In separate experiments, we filled isolated lung lobes with buffer containing RISA and microsampled free interstitial fluid. The free interstitial fluid RISA concentration averaged 90% of airway concentration. The interstitium appears to fill by bulk flow through low-resistance channels. Tracer protein uptake from a fluid-filled lung lobe involves three fluid compartments. We postulate fluid and protein enter the interstitium by bulk flow along a hydrostatic pressure gradient, and protein then diffuses into plasma from the interstitium.


2006 ◽  
Vol 100 (4) ◽  
pp. 1293-1300 ◽  
Author(s):  
Minhtri K. Nguyen ◽  
Ira Kurtz

The presence of negatively charged, impermeant proteins in the plasma space alters the distribution of diffusible ions in the plasma and interstitial fluid (ISF) compartments to preserve electroneutrality. We have derived a new mathematical model to define the quantitative interrelationship between the Gibbs-Donnan equilibrium, the osmolality of body fluid compartments, and the plasma water Na+ concentration ([Na+]pw) and validated the model using empirical data from the literature. The new model can account for the alterations in all ionic concentrations (Na+ and non-Na+ ions) between the plasma and ISF due to Gibbs-Donnan equilibrium. In addition to the effect of Gibbs-Donnan equilibrium on Na+ distribution between plasma and ISF, our model predicts that the altered distribution of osmotically active non-Na+ ions will also have a modulating effect on the [Na+]pw by affecting the distribution of H2O between the plasma and ISF. The new physiological insights provided by this model can for the first time provide a basis for understanding quantitatively how changes in the plasma protein concentration modulate the [Na+]pw. Moreover, this model defines all known physiological factors that may modulate the [Na+]pw and is especially helpful in conceptually understanding the pathophysiological basis of the dysnatremias.


1961 ◽  
Vol 201 (6) ◽  
pp. 975-979 ◽  
Author(s):  
Avron Y. Sweet ◽  
Marvin F. Levitt ◽  
Horace L. Hodes

Standard techniques for measurement of inulin clearance, total body water, inulin space, sucrose space, and T-1824 space were demonstrated to be applicable to normal untrained cynomolgus monkeys. The average of the values obtained are more like man's than are those of any other experimental animal. Normal values were established for plasma sodium, potassium, and chloride concentrations and water, sodium, potassium, and chloride contents of muscle, bone, tendon, cerebrum, medulla, and spinal cord. As reported by others, tissues of low cellularity such as bone and tendon were found to have large quantities of sodium and chloride which could not be assigned to the interstitial fluid. In keeping with the decrease of cellularity of central nervous system tissues from above downward, there was a parallel decrease in potassium and an increase in sodium and chloride contents. These studies provide normal values for salt and water composition of various tissues and fluid compartments and demonstrate the applicability of physiological techniques to the monkey, which is teleologically and apparently physiologically closest to man.


2006 ◽  
Vol 101 (2) ◽  
pp. 692-694 ◽  
Author(s):  
Troels Ring

The following is the abstract of the article discussed in the subsequent letter: The presence of negatively charged, impermeant proteins in the plasma space alters the distribution of diffusible ions in the plasma and interstitial fluid (ISF) compartments to preserve electroneutrality. We have derived a new mathematical model to define the quantitative interrelationship between the Gibbs-Donnan equilibrium, the osmolality of body fluid compartments, and the plasma water Na+ concentration ([Na+]pw) and validated the model using empirical data from the literature. The new model can account for the alterations in all ionic concentrations (Na+ and non-Na+ ions) between the plasma and ISF due to Gibbs-Donnan equilibrium. In addition to the effect of Gibbs-Donnan equilibrium on Na+ distribution between plasma and ISF, our model predicts that the altered distribution of osmotically active non-Na+ ions will also have a modulating effect on the [Na+]pw by affecting the distribution of H2O between the plasma and ISF. The new physiological insights provided by this model can for the first time provide a basis for understanding quantitatively how changes in the plasma protein concentration modulate the [Na+]pw. Moreover, this model defines all known physiological factors that may modulate the [Na+]pw and is especially helpful in conceptually understanding the pathophysiological basis of the dysnatremias.


2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

2014 ◽  
Author(s):  
Robert I McLachlan ◽  
Andrew N Stephens ◽  
Adam Rainczuk ◽  
Caroline Foo ◽  
Mark R Condina ◽  
...  

2016 ◽  
Vol 21 (2) ◽  
pp. 28-37
Author(s):  
Oscar Solís-Salgado ◽  
José Luis López-Payares ◽  
Mauricio Ayala-González

Las vías de drenaje solutos del sistema nervioso central (SNC) participan en el recambio de liquido intersticial con el líquido cefalorraquídeo (LIT-LCR), generando un estado de homeostasis. Las alteraciones dentro de este sistema homeostático afectará la eliminación de solutos del espacio intersticial (EIT) como el péptido βa y proteína tau, los cuales son sustancias neurotóxicas para el SNC. Se han utilizado técnicas experimentales para poder analizar el intercambio LIT-LCR, las cuales revelan que este intercambio tiene una estructura bien organizada. La eliminación de solutos del SNC no tiene una estructura anatómica propiamente, se han descubierto vías de eliminación de solutos a través de marcadores florecentes en el espacio subaracnoideo, cisternas de la base y sistema ventricular que nos permiten observar una serie de vías ampliamente distribuidas en el cerebro. El LCR muestra que tiene una función linfática debido a su recambio con el LIT a lo largo de rutas paravasculares. Estos espacios que rodean la superficie arterial así como los espacios de Virchow-Robin y el pie astrocitico junto con la AQP-4, facilitan la entrada de LCR para-arterial y el aclaramiento de LIT para-venoso dentro del cerebro. El flujo y dirección que toma el LCR por estas estructuras, es conducido por la pulsación arterial. Esta función será la que finalmente llevara a la eliminación de estas sustancias neurotóxicas. En base a la dependencia de este flujo para la eliminación de sustancias se propone que el sistema sea llamado “ la Vía Glinfática”. La bibliografía así como las limitaciones que se encuentran en esta revisión están dadas por la metodología de búsqueda que ha sido realizada principalmente en PubMed utilizando los siguientes términos Mesh: Cerebral Arterial Pulsation, the brain via paravascular, drainage of amyloid-beta, bulk flow of brain interstitial fluid, radiolabeled polyethylene glycols and albumin, amyloid-β, the perivascular astroglial sheath, Brain Glymphatic Transport.


Sign in / Sign up

Export Citation Format

Share Document