A roe-type numerical solver for the two-phase two-fluid six-equation model with realistic equation of state

2018 ◽  
Vol 326 ◽  
pp. 354-370 ◽  
Author(s):  
Guojun Hu ◽  
Tomasz Kozlowski
2016 ◽  
Vol 13 (04) ◽  
pp. 1641010
Author(s):  
Yang-Yao Niu

In this paper, an unsteady preconditioning formulation for multi-phase flows with arbitrary equation of state based on the approximated Riemann solver is developed for multi-phase flows at all speed. This paper considers a homogeneous two-phase multi-equation mixture model with the assumption of kinematics and thermodynamics equilibriums. The thermodynamics behaviors of liquid phase, vapor phase and their phase transitional process are described by a temperature-dependent hybrid equation of state. Benchmark test cases, including one-dimensional (1D) condensation shock in the cavitated nozzle and two-dimensional (2D) cavitated blunt body problem, demonstrate accurate capturing of interfaces, shock waves and cavitation zones.


2021 ◽  
Vol 33 (3) ◽  
pp. 033324
Author(s):  
Alejandro Clausse ◽  
Martín López de Bertodano

Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 111
Author(s):  
Cheung-Hei Yeung ◽  
Lap-Ming Lin ◽  
Nils Andersson ◽  
Greg Comer

The I-Love-Q relations are approximate equation-of-state independent relations that connect the moment of inertia, the spin-induced quadrupole moment, and the tidal deformability of neutron stars. In this paper, we study the I-Love-Q relations for superfluid neutron stars for a general relativistic two-fluid model: one fluid being the neutron superfluid and the other a conglomerate of all charged components. We study to what extent the two-fluid dynamics might affect the robustness of the I-Love-Q relations by using a simple two-component polytropic model and a relativistic mean field model with entrainment for the equation-of-state. Our results depend crucially on the spin ratio Ωn/Ωp between the angular velocities of the neutron superfluid and the normal component. We find that the I-Love-Q relations can still be satisfied to high accuracy for superfluid neutron stars as long as the two fluids are nearly co-rotating Ωn/Ωp≈1. However, the deviations from the I-Love-Q relations increase as the spin ratio deviates from unity. In particular, the deviation of the Q-Love relation can be as large as O(10%) if Ωn/Ωp differ from unity by a few tens of percent. As Ωn/Ωp≈1 is expected for realistic neutron stars, our results suggest that the two-fluid dynamics should not affect the accuracy of any gravitational waveform models for neutron star binaries that employ the relation to connect the spin-induced quadrupole moment and the tidal deformability.


1967 ◽  
Vol 89 (4) ◽  
pp. 577-586 ◽  
Author(s):  
P. Cooper

A model is developed for analytically determining pump inducer performance in both the single-phase and cavitating flow regimes. An equation of state for vaporizing flow is used in an approximate, three-dimensional analysis of the flow field. The method accounts for losses and yields internal distributions of fluid pressure, velocity, and density together with the resulting overall efficiency and pressure rise. The results of calculated performance of two sample inducers are presented. Comparison with recent theory for fluid thermal effects on suction head requirements is made with the aid of a resulting dimensionless vaporization parameter.


Sign in / Sign up

Export Citation Format

Share Document