scholarly journals Deducing the asymptotic normalization constant of the 2+ subthreshold state in 16O from 12C + α elastic scattering

2004 ◽  
Vol 738 ◽  
pp. 416-420 ◽  
Author(s):  
J.-M. Sparenberg
1977 ◽  
Vol 55 (10) ◽  
pp. 884-897 ◽  
Author(s):  
Dale D. Ellis

Binding energy, ET, wave function, form factor, and asymptotic normalization constant, CT, have been calculated for the model triton using two classes of phase equivalent potentials: partly non-local (PNL) potentials, and rank-two separable potentials. The results are compared with those of Fiedeldey. The binding energy is sensitive to the deuteron wave function and zero-energy wound integral. The triton form factors depend on ET and the deuteron wave function. CT is almost insensitive to variations in the PNL potentials, but increases with ET for the separable potentials.


1979 ◽  
Vol 315 (1-2) ◽  
pp. 66-70 ◽  
Author(s):  
W. Grüebler ◽  
H.R. Bürgi ◽  
V. König ◽  
P.A. Schmelzbach ◽  
B. Jenny

Author(s):  
W. Grüebler ◽  
H. R. Bürgi ◽  
V. König ◽  
P. A. Schmelzbach ◽  
B. Jenny

Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
D. L. Misell

In the electron microscopy of biological sections the adverse effect of chromatic aberration on image resolution is well known. In this paper calculations are presented for the inelastic and elastic image intensities using a wave-optical formulation. Quantitative estimates of the deterioration in image resolution as a result of chromatic aberration are presented as an alternative to geometric calculations. The predominance of inelastic scattering in the unstained biological and polymeric materials is shown by the inelastic to elastic ratio, I/E, within an objective aperture of 0.005 rad for amorphous carbon of a thickness, t=50nm, typical of biological sections; E=200keV, I/E=16.


Author(s):  
Yasushi Kokubo ◽  
Hirotami Koike ◽  
Teruo Someya

One of the advantages of scanning electron microscopy is the capability for processing the image contrast, i.e., the image processing technique. Crewe et al were the first to apply this technique to a field emission scanning microscope and show images of individual atoms. They obtained a contrast which depended exclusively on the atomic numbers of specimen elements (Zcontrast), by displaying the images treated with the intensity ratio of elastically scattered to inelastically scattered electrons. The elastic scattering electrons were extracted by a solid detector and inelastic scattering electrons by an energy analyzer. We noted, however, that there is a possibility of the same contrast being obtained only by using an annular-type solid detector consisting of multiple concentric detector elements.


Author(s):  
J. P. Langmore ◽  
N. R. Cozzarelli ◽  
A. V. Crewe

A system has been developed to allow highly specific derivatization of the thymine bases of DNA with mercurial compounds wich should be visible in the high resolution scanning electron microscope. Three problems must be completely solved before this staining system will be useful for base sequencing by electron microscopy: 1) the staining must be shown to be highly specific for one base, 2) the stained DNA must remain intact in a high vacuum on a thin support film suitable for microscopy, 3) the arrangement of heavy atoms on the DNA must be determined by the elastic scattering of electrons in the microscope without loss or large movement of heavy atoms.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Sign in / Sign up

Export Citation Format

Share Document