Effect of desacyl-ghrelin on food anticipatory activity in a mouse model of chronic food restriction

2020 ◽  
Vol 34 (1) ◽  
pp. 9
Author(s):  
L. Robichon ◽  
S. Adda ◽  
V. Tolle ◽  
O. Viltart
2013 ◽  
Vol 305 (8) ◽  
pp. R949-R960 ◽  
Author(s):  
Michael F. Wiater ◽  
Ai-Jun Li ◽  
Thu T. Dinh ◽  
Heiko T. Jansen ◽  
Sue Ritter

Previously, we investigated the role of neuropeptide Y and leptin-sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound homeostatic and circadian deficits with an intact suprachiasmatic nucleus. We propose that the arcuate nuclei (Arc) are required for the integration of homeostatic circadian systems, including temperature and activity. We tested this hypothesis using saporin toxin conjugated to leptin (Lep-SAP) injected into Arc in rats. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth. Circadian rhythms were examined over 49 days during the static phase. Rats were maintained on a 12:12-h light-dark (LD) schedule for 13 days and, thereafter, maintained in continuous dark (DD). After the first 13 days of DD, food was restricted to 4 h/day for 10 days. We found that the activity of Lep-SAP rats was arrhythmic in DD, but that food anticipatory activity was, nevertheless, entrainable to the restricted feeding schedule, and the entrained rhythm persisted during the subsequent 3-day fast in DD. Thus, for activity, the circuitry for the light-entrainable oscillator, but not for the food-entrainable oscillator, was disabled by the Arc lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats and did not entrain to restricted feeding. We conclude that the leptin-sensitive network that includes the Arc is required for entrainment of activity by photic cues and entrainment of temperature by food, but is not required for entrainment of activity by food or temperature by photic cues.


2017 ◽  
Vol 27 ◽  
pp. S1121
Author(s):  
E.Y. Berreby ◽  
A. Labarthe ◽  
P. Zizzari ◽  
P. Durriez ◽  
M. Mequinion ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0191373 ◽  
Author(s):  
Antonio Aguayo ◽  
Camille S. Martin ◽  
Timothy F. Huddy ◽  
Maya Ogawa-Okada ◽  
Jamie L. Adkins ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e18377 ◽  
Author(s):  
Keith M. Gunapala ◽  
Christian M. Gallardo ◽  
Cynthia T. Hsu ◽  
Andrew D. Steele

2007 ◽  
Vol 22 (6) ◽  
pp. 467-478 ◽  
Author(s):  
Glenn J. Landry ◽  
Glenn R. Yamakawa ◽  
Ian C. Webb ◽  
Rhiannon J. Mear ◽  
Ralph E. Mistlberger

2012 ◽  
Vol 225 (1) ◽  
pp. 241-250 ◽  
Author(s):  
Tracey M. D’Cunha ◽  
Firas Sedki ◽  
Josie Macri ◽  
Cristina Casola ◽  
Uri Shalev

2014 ◽  
Vol 306 (8) ◽  
pp. E904-E915 ◽  
Author(s):  
Aaron J. Mercer ◽  
Ronald C. Stuart ◽  
Courtney A. Attard ◽  
Veronica Otero-Corchon ◽  
Eduardo A. Nillni ◽  
...  

Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC- Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24–48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.


Sign in / Sign up

Export Citation Format

Share Document