food anticipatory activity
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Caba ◽  
Enrique Meza ◽  
Carolina Escobar ◽  
Angeles Jiménez ◽  
Mario Daniel Caba-Flores ◽  
...  

AbstractThe mechanisms underlying food anticipatory activity are still poorly understood. Here we explored the role of oxytocin (OT) and the protein c-Fos in the supraoptic nucleus (SON), medial (PVNm) and posterior (PVNp) regions of the paraventricular hypothalamic nucleus. Adult rats were assigned to one of four groups: scheduled restricted feeding (RF), ad libitum (AL), fasting after restricted feeding (RF-F), to explore the possible persistence of oscillations, or ad libitum fasted (AL-F). In the SON and in the PVNm, OT cells were c-Fos positive after food intake; in contrast, OT cells in the PVNp showed c-Fos activation in anticipation to food access, which persisted in RF-F subjects. We conclude that OT and non-OT cells of the SON and PVNm may play a role as recipients of the entraining signal provided by food intake, whereas those of the PVNp which contain motor preautonomic cells that project to peripheral organs, may be involved in the hormonal and metabolic anticipatory changes in preparation for food presentation and thus, may be part of a link between central and peripheral oscillators. In addition, due to their persistent activation they may participate in the neuronal network for the clock mechanism that leads to food entrainment.


iScience ◽  
2021 ◽  
pp. 103142
Author(s):  
Ashleigh G. Wilcox ◽  
R. Sonia Bains ◽  
Debbie Williams ◽  
Elizabeth Joynson ◽  
Lucie Vizor ◽  
...  

2021 ◽  
Author(s):  
Mario Caba ◽  
Enrique Meza ◽  
Carolina Escobar ◽  
Angeles Jiménez ◽  
Mario Daniel Caba-Flores ◽  
...  

Abstract The mechanisms underlying food anticipatory activity is still not well understood. Here we explored the role of oxytocin (OT) and the protein c-Fos in the supraoptic nucleus (SON) and in the medial (PVNm) and posterior (PVNp) regions of the paraventricular hypothalamic nucleus. Adult rats were assigned to one of four groups: scheduled restricted feeding (RF), Ad libitum (AL), fasting after restricted feeding (RF-F), to explore the possible persistence of oscillations, or Ad libitum fasted (AL-F). In the SON and in the PVNm, OT cells were c-Fos positive after food intake; contrasting, OT cells in the PVNp showed c-Fos activation in anticipation to food access, which persisted in RF-F subjects. We conclude that OT cells of the SON and PVNm may play a role as recipients of the entraining signal provided by food intake, whereas those of the PVNp which contain motor preautonomic cells that project to peripheral organs, may be involved in the hormonal and metabolic anticipatory changes in preparation for food presentation and thus, may be part of a link between central and peripheral oscillators. In addition, due to their persistent activation they may participate in the neuronal network for the clock mechanism that leads to food entrainment.


Sociobiology ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 5863
Author(s):  
Albeane Guimarães Silva ◽  
Gracy Chrisley Alencar Carvalho ◽  
Ana Catarina De Miranda ◽  
Felipe Andrés León Contrera ◽  
Márcia Maria Corrêa Rêgo

Bees feed on nectar and pollen, however these resources are often available to floral visitors during restricted temporal windows. The presence of temporal memory is an advantage, as foragers can save energy by scheduling their flight activity to coincide with peaks of nectar secretion in the flowers or at times of higher sugar concentration in the nectar. Thus, the objectives of this study were (i) to investigate whether Melipona subnitida has temporal memory, and evaluate whether it becomes more accurate over the days, and (ii) to determine whether the behavior of anticipating the offered resource presents intra-individual consistency in the behavior of foragers. The visitation of the bees was high before and during the opening interval of the food resource, but rare after the closing, suggesting that M. subnitida has the ability to memorize the time of availability of the resource, increasing the accuracy over the days, with bees anticipating their visits in relation to the time they discovered the resource, and the opening time of the resource. There was individual consistency in the behavior of food-anticipatory activity, with the presence of bees that consistently anticipated in relation to the opening time of the resource (inspectors) and bees that consistently did not anticipate (reactivated forager) . By anticipating the search for a resource, foragers allow the group to exploit it effectively, as they exploit it in the first hours of its opening, and foragers that never anticipate avoid unnecessary risks of predation and energy expenditure.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0242897
Author(s):  
Dina R. Assali ◽  
Michael Sidikpramana ◽  
Andrew P. Villa ◽  
Jeffrey Falkenstein ◽  
Andrew D. Steele

Circadian rhythms are entrained by light and influenced by non-photic stimuli, such as feeding. The activity preceding scheduled mealtimes, food anticipatory activity (FAA), is elicited in rodents fed a limited amount at scheduled times. FAA is thought to be the output of an unidentified food entrained oscillator. Previous studies, using gene deletion and receptor pharmacology, implicated dopamine type receptor 1 (D1R) signaling in the dorsal striatum as necessary for FAA in mice. To further understand the role of D1R in promoting FAA, we utilized the Cre-lox system to create cell type-specific deletions of D1R, conditionally deleting D1R in GABA neurons using Vgat-ires-Cre line. This conditional deletion mutant had attenuated FAA, but the amount was higher than expected based on prior results using a constitutive knockout of D1R, D1R KODrago. This result prompted us to re-test the original D1R KODrago line, which expressed less FAA than controls, but only moderately so. To determine if genetic drift had diminished the effect of D1R deletion on FAA, we re-established the D1R KODrago knockout line from cryopreserved samples. The reestablished D1R KODrago-cryo had a clear impairment of FAA compared to controls, but still developed increased activity preceding mealtime across the 4 weeks of timed feeding. Finally, we tested a different deletion allele of D1R created by the Knockout Mouse Project. This line of D1R KOKOMP mice had a significant impairment in the acquisition of FAA, but eventually reached similar levels of premeal activity compared to controls after 4 weeks of timed feeding. Taken together, our results suggest that D1R signaling promotes FAA, but other dopamine receptors likely contribute to FAA given that mice lacking the D1 receptor still retain some FAA.


2021 ◽  
Author(s):  
Mizuki Sugiyama ◽  
Ichiko Nishijima ◽  
Wataru Nakamura ◽  
Takahiro J. Nakamura

2020 ◽  
Author(s):  
Dina R. Assali ◽  
Michael Sidikpramana ◽  
Andrew P. Villa ◽  
Jeffrey Falkenstein ◽  
Andrew D. Steele

ABSTRACTCircadian rhythms are entrained by light and influenced by non-photic stimuli, such as feeding. The activity preceding scheduled mealtimes, food anticipatory activity (FAA), is elicited in rodents fed a limited amount at scheduled times. FAA is thought to be the output of an unidentified food entrained oscillator. Previous studies, using gene deletion and receptor pharmacology, implicated dopamine type receptor 1 (D1R) signaling in the dorsal striatum as necessary for FAA in mice. To further understand the role of D1R in promoting FAA, we utilized the Cre-lox system to create cell type-specific deletions of D1R. We were unsuccessful in obtaining conditional deletion of D1R when using transgenically driven D1R-Cre. We then created a conditional deletion of D1R in GABA neurons using Vgat-ires-Cre line, which had attenuated FAA, but the amount was higher than expected based on prior results using a constitutive knockout of D1R, D1R KODrago. This result prompted us to re-test the original D1R KODrago line, which expressed less FAA than controls, but only moderately so. To determine if genetic drift had diminished the effect of D1R deletion on FAA, we re-established the D1R KODrago knockout line from cryopreserved samples. The reestablished D1R KODrago-cryo had a clear impairment of FAA compared to controls, but still developed increased activity preceding mealtime across the 4 weeks of timed feeding. Finally, we tested a different deletion allele of D1R created by the Knockout Mouse Project. This line of D1R KOKOMP mice had a significant impairment in the acquisition of FAA, but eventually reached similar levels of premeal activity compared to controls after 4 weeks of timed feeding. Taken together, our results suggest that D1R signaling promotes FAA, but other dopamine receptors likely contribute to FAA given that mice lacking the D1 receptor still retain some FAA.


Sign in / Sign up

Export Citation Format

Share Document