Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor α–mediated mechanism in mice

2014 ◽  
Vol 34 (3) ◽  
pp. 268-275 ◽  
Author(s):  
Yan Cui ◽  
Xiaoli Wang ◽  
Jie Xue ◽  
Jiangyun Liu ◽  
Meilin Xie
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiayao Yang ◽  
Dongqing Tao ◽  
Wei Ma ◽  
Song Liu ◽  
Yan Liao ◽  
...  

Objective. Sijunzi, Lizhong, and Fuzilizhong decoction were traditional Chinese classic formulations, which are widely used in clinical treatment, and the underlying mechanism is unclear. In this study, we aim to investigate the molecular mechanisms underlying the protective effects of Sijunzi, Lizhong, and Fuzilizhong on nonalcoholic fatty liver disease (NAFLD). Methods. Male Wistar rats were fed a high-fat diet for four weeks to induce NAFLD and were thereafter administered Sijunzi (8 g/kg/d), Lizhong (10 g/kg/d), or Fuzilizhong (10 g/kg/d) by gavage for four weeks. Hepatic damage, lipid accumulation, inflammation, autophagy, and peroxisome proliferator-activated receptor-α signaling were evaluated. Results. The high-fat diet-fed rats showed typical symptoms of NAFLD, including elevated levels of hepatic damage indicators, increased hepatic lipid deposition and fibrosis, severe liver inflammation, and prominent autophagy. Upon administration of Sijunzi, Lizhong, and Fuzilizhong, liver health was improved remarkably, along with ameliorated symptoms of NAFLD. In addition, NAFLD-suppressed peroxisome proliferator-activated receptor-α signaling was reactivated after treatment with the three types of decoctions. Conclusions. The results collectively signify the effective therapeutic and protective functions of Sijunzi, Lizhong, and Fuzilizhong against NAFLD and demonstrate the potential of Chinese herbal medication in mitigating the symptoms of liver diseases. Novelty of the Work. Traditional Chinese herbal medicine has been used for centuries to treat various diseases, but the molecular mechanisms of individual ingredients have rarely been studied. The novelty of our work lies in elucidating the specific signaling pathways involved in the control of NAFLD using three common Chinese herbal decoctions. We suggest that natural herbal formulations can be effective therapeutic agents to combat against NAFLD.


2021 ◽  
Author(s):  
Rasoul Akbari ◽  
Hamid Yaghooti ◽  
Mohammad Taha Jalali ◽  
Laya Sadat Khorsandi ◽  
Narges Mohammadtaghvaei

Abstract Background: Non-alcoholic steatohepatitis (NASH) has become a global medical problem. Currently, there is no approved pharmacologic treatment for this condition. This study aimed to evaluate the ameliorative effects of Capparis spinosa (CS) on NASH in comparison to fenofibrate.Methods: An animal model of NASH was developed using a high-fat (HF) emulsion. Fatty liver rats were treated with aqueous extract of CS fruit or fenofibrate in parallel to the HF for six weeks. Animals were examined for weight gain, serum biochemistry, insulin sensitivity, hepatic triglyceride (TG) content, histopathological changes as well as gene expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPARα) and Carnitine palmitoyltransferase I (CPT1) in liver.Results: Fasting blood sugar, insulin level, body and liver weight, activities of liver enzymes, hepatic triglyceride (TG) content as well as serum lipids were decreased following six weeks CS and fenofibrate treatments compared to the HF administration alone. Histopathological examinations also showed that liver steatosis, inflammation and hepatic fibrosis were markedly attenuated in response to CS and fenofibrate interventions. At the molecular level, CS treatment down-regulated SREBP1c, ACC and up-regulated CPT1 expression, but did not show a significant effect on PPARα. In contrast, fenofibrate treatment induced the expression of all studied genes in fatty liver rats.Conclusions: These findings indicated the favorable therapeutic effects of CS fruit extract on liver damages associated with NASH. The beneficial effects of CS on lipid accumulation and steatosis were comparable to those of fenofibrate.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yan Jiang ◽  
Duankai Chen ◽  
Qiming Gong ◽  
Qunqing Xu ◽  
Dong Pan ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) can lead to chronic liver diseases associated with mitochondrial damages. However, the exact mechanisms involved in the etiology of the disease are not clear. Methods To gain new insights, the changes affecting sirtuin 1 (SIRT-1) during liver fat accumulation was investigated in a NAFLD mouse model. In addition, the in vitro research investigated the regulation operated by SIRT-1 on mitochondrial structures, biogenesis, functions, and autophagy. Results In mice NAFLD, high-fat-diet (HFD) increased body weight gain, upregulated serum total cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, blood glucose, insulin levels, and liver malondialdehyde, and decreased liver superoxide dismutase activity. In liver, the levels of SIRT-1 and peroxisome proliferator-activated receptor-gamma coactivator -1α (PGC-1α) decreased. The expression of peroxisome proliferator-activated receptor-α and Beclin-1 proteins was also reduced, while p62/SQSTM1 expression increased. These results demonstrated SIRT-1 impairment in mouse NAFLD. In a well-established NAFLD cell model, exposure of the HepG2 hepatocyte cell line to oleic acid (OA) for 48 h caused viability reduction, apoptosis, lipid accumulation, and reactive oxygen species production. Disturbance of SIRT-1 expression affected mitochondria. Pre-treatment with Tenovin-6, a SIRT-1 inhibitor, aggravated the effect of OA on hepG2, while this effect was reversed by CAY10602, a SIRT-1 activator. Further investigation demonstrated that SIRT-1 activity was involved in mitochondrial biogenesis through PGC-1α and participated to the balance of autophagy regulatory proteins. Conclusion In conclusion, in high-fat conditions, SIRT-1 regulates multiple cellular properties by influencing on mitochondrial physiology and lipid autophagy via the PGC-1α pathway. The SIRT-1/PGC-1α pathway could be targeted to develop new NAFLD therapeutic strategies.


2020 ◽  
Vol 21 (6) ◽  
pp. 599-609 ◽  
Author(s):  
Longxin Qiu ◽  
Chang Guo

Aldose reductase (AR) has been reported to be involved in the development of nonalcoholic fatty liver disease (NAFLD). Hepatic AR is induced under hyperglycemia condition and converts excess glucose to lipogenic fructose, which contributes in part to the accumulation of fat in the liver cells of diabetes rodents. In addition, the hyperglycemia-induced AR or nutrition-induced AR causes suppression of the transcriptional activity of peroxisome proliferator-activated receptor (PPAR) α and reduced lipolysis in the liver, which also contribute to the development of NAFLD. Moreover, AR induction in non-alcoholic steatohepatitis (NASH) may aggravate oxidative stress and the expression of inflammatory cytokines in the liver. Here, we summarize the knowledge on AR inhibitors of plant origin and review the effect of some plant-derived AR inhibitors on NAFLD/NASH in rodents. Natural AR inhibitors may improve NAFLD at least in part through attenuating oxidative stress and inflammatory cytokine expression. Some of the natural AR inhibitors have been reported to attenuate hepatic steatosis through the regulation of PPARα-mediated fatty acid oxidation. In this review, we propose that the natural AR inhibitors are potential therapeutic agents for NAFLD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


Sign in / Sign up

Export Citation Format

Share Document