scholarly journals Capparis Spinosa Improves Non-Alcoholic Steatohepatitis Through Down-Regulating SREBP-1c and a PPARα-Independent Pathway in High-Fat Diet-Fed Rats

Author(s):  
Rasoul Akbari ◽  
Hamid Yaghooti ◽  
Mohammad Taha Jalali ◽  
Laya Sadat Khorsandi ◽  
Narges Mohammadtaghvaei

Abstract Background: Non-alcoholic steatohepatitis (NASH) has become a global medical problem. Currently, there is no approved pharmacologic treatment for this condition. This study aimed to evaluate the ameliorative effects of Capparis spinosa (CS) on NASH in comparison to fenofibrate.Methods: An animal model of NASH was developed using a high-fat (HF) emulsion. Fatty liver rats were treated with aqueous extract of CS fruit or fenofibrate in parallel to the HF for six weeks. Animals were examined for weight gain, serum biochemistry, insulin sensitivity, hepatic triglyceride (TG) content, histopathological changes as well as gene expression of sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), peroxisome proliferator-activated receptor α (PPARα) and Carnitine palmitoyltransferase I (CPT1) in liver.Results: Fasting blood sugar, insulin level, body and liver weight, activities of liver enzymes, hepatic triglyceride (TG) content as well as serum lipids were decreased following six weeks CS and fenofibrate treatments compared to the HF administration alone. Histopathological examinations also showed that liver steatosis, inflammation and hepatic fibrosis were markedly attenuated in response to CS and fenofibrate interventions. At the molecular level, CS treatment down-regulated SREBP1c, ACC and up-regulated CPT1 expression, but did not show a significant effect on PPARα. In contrast, fenofibrate treatment induced the expression of all studied genes in fatty liver rats.Conclusions: These findings indicated the favorable therapeutic effects of CS fruit extract on liver damages associated with NASH. The beneficial effects of CS on lipid accumulation and steatosis were comparable to those of fenofibrate.

2015 ◽  
Vol 35 (6) ◽  
pp. 2349-2359 ◽  
Author(s):  
Youli Xi ◽  
Miaozong Wu ◽  
Hongxia Li ◽  
Siqi Dong ◽  
Erfei Luo ◽  
...  

Background/Aims: Obesity-associated fatty liver disease affects millions of individuals. This study aimed to evaluate the therapeutic effects of baicalin to treat obesity and fatty liver in high fat diet-induced obese mice, and to study the potential molecular mechanisms. Methods: High fat diet-induced obese animals were treated with different doses of baicalin (100, 200 and 400 mg/kg/d). Whole body, fat pad and liver were weighed. Hyperlipidemia, liver steatosis, liver function, and hepatic Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ) / AMP-activated protein kinase (AMPK) / acetyl-CoA carboxylase (ACC) were further evaluated. Results: Baicalin significantly decreased liver, epididymal fat and body weights in high fat diet-fed mice, which were associated with decreased serum levels of triglycerides, total cholesterol, LDL, alanine transaminase and aspartate transaminase, but increased serum HDL level. Pathological analysis revealed baicalin dose-dependently decreased the degree of hepatic steatosis, with predominantly diminished macrovesicular steatosis at lower dose but both macrovesicular and microvesicular steatoses at higher dose of baicalin. Baicalin dose-dependently inhibited hepatic CaMKKβ/AMPK/ACC pathway. Conclusion: These data suggest that baicalin up to 400 mg/kg/d is safe and able to decrease the degree of obesity and fatty liver diseases. Hepatic CaMKKβ/AMPK/ACC pathway may mediate the therapeutic effects of baicalin in high fat diet animal model.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jiayao Yang ◽  
Dongqing Tao ◽  
Wei Ma ◽  
Song Liu ◽  
Yan Liao ◽  
...  

Objective. Sijunzi, Lizhong, and Fuzilizhong decoction were traditional Chinese classic formulations, which are widely used in clinical treatment, and the underlying mechanism is unclear. In this study, we aim to investigate the molecular mechanisms underlying the protective effects of Sijunzi, Lizhong, and Fuzilizhong on nonalcoholic fatty liver disease (NAFLD). Methods. Male Wistar rats were fed a high-fat diet for four weeks to induce NAFLD and were thereafter administered Sijunzi (8 g/kg/d), Lizhong (10 g/kg/d), or Fuzilizhong (10 g/kg/d) by gavage for four weeks. Hepatic damage, lipid accumulation, inflammation, autophagy, and peroxisome proliferator-activated receptor-α signaling were evaluated. Results. The high-fat diet-fed rats showed typical symptoms of NAFLD, including elevated levels of hepatic damage indicators, increased hepatic lipid deposition and fibrosis, severe liver inflammation, and prominent autophagy. Upon administration of Sijunzi, Lizhong, and Fuzilizhong, liver health was improved remarkably, along with ameliorated symptoms of NAFLD. In addition, NAFLD-suppressed peroxisome proliferator-activated receptor-α signaling was reactivated after treatment with the three types of decoctions. Conclusions. The results collectively signify the effective therapeutic and protective functions of Sijunzi, Lizhong, and Fuzilizhong against NAFLD and demonstrate the potential of Chinese herbal medication in mitigating the symptoms of liver diseases. Novelty of the Work. Traditional Chinese herbal medicine has been used for centuries to treat various diseases, but the molecular mechanisms of individual ingredients have rarely been studied. The novelty of our work lies in elucidating the specific signaling pathways involved in the control of NAFLD using three common Chinese herbal decoctions. We suggest that natural herbal formulations can be effective therapeutic agents to combat against NAFLD.


Endocrinology ◽  
2010 ◽  
Vol 151 (6) ◽  
pp. 2577-2589 ◽  
Author(s):  
Kartik Shankar ◽  
Ping Kang ◽  
Amanda Harrell ◽  
Ying Zhong ◽  
John C. Marecki ◽  
...  

Gestational exposure to maternal overweight (OW) influences the risk of obesity in adult life. Male offspring from OW dams gain greater body weight and fat mass and develop insulin resistance when fed high-fat diets (45% fat). In this report, we identify molecular targets of maternal OW-induced programming at postnatal d 21 before challenge with the high-fat diet. We conducted global transcriptome profiling, gene/protein expression analyses, and characterization of downstream signaling of insulin and adiponectin pathways in conjunction with endocrine and biochemical characterization. Offspring born to OW dams displayed increased serum insulin, leptin, and resistin levels (P < 0.05) at postnatal d 21 preceding changes in body composition. A lipogenic transcriptome signature in the liver, before development of obesity, was evident in OW-dam offspring. A coordinated locus of 20 sterol regulatory element-binding protein-1-regulated target genes was induced by maternal OW. Increased nuclear levels of sterol regulatory element-binding protein-1 and recruitment to the fatty acid synthase promoter were confirmed via ELISA and chromatin immunoprecipitation analyses, respectively. Higher fatty acid synthase and acetyl coenzyme A carboxylase protein and pAKT (Thr308) and phospho-insulin receptor-β were confirmed via immunoblotting. Maternal OW also attenuated AMP kinase/peroxisome proliferator-activated receptor-α signaling in the offspring liver, including transcriptional down-regulation of several peroxisome proliferator-activated receptor-α-regulated genes. Hepatic mRNA and circulating fibroblast growth factor-21 levels were significantly lower in OW-dam offspring. Furthermore, serum levels of high-molecular-weight adiponectin (P < 0.05) were decreased in OW-dam offspring. Phosphorylation of hepatic AMP-kinase (Thr172) was significantly decreased in OW-dam offspring, along with lower AdipoR1 mRNA. Our results strongly suggest that gestational exposure to maternal obesity programs multiple aspects of energy-balance regulation in the offspring.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yan Jiang ◽  
Duankai Chen ◽  
Qiming Gong ◽  
Qunqing Xu ◽  
Dong Pan ◽  
...  

Abstract Background Nonalcoholic fatty liver disease (NAFLD) can lead to chronic liver diseases associated with mitochondrial damages. However, the exact mechanisms involved in the etiology of the disease are not clear. Methods To gain new insights, the changes affecting sirtuin 1 (SIRT-1) during liver fat accumulation was investigated in a NAFLD mouse model. In addition, the in vitro research investigated the regulation operated by SIRT-1 on mitochondrial structures, biogenesis, functions, and autophagy. Results In mice NAFLD, high-fat-diet (HFD) increased body weight gain, upregulated serum total cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, blood glucose, insulin levels, and liver malondialdehyde, and decreased liver superoxide dismutase activity. In liver, the levels of SIRT-1 and peroxisome proliferator-activated receptor-gamma coactivator -1α (PGC-1α) decreased. The expression of peroxisome proliferator-activated receptor-α and Beclin-1 proteins was also reduced, while p62/SQSTM1 expression increased. These results demonstrated SIRT-1 impairment in mouse NAFLD. In a well-established NAFLD cell model, exposure of the HepG2 hepatocyte cell line to oleic acid (OA) for 48 h caused viability reduction, apoptosis, lipid accumulation, and reactive oxygen species production. Disturbance of SIRT-1 expression affected mitochondria. Pre-treatment with Tenovin-6, a SIRT-1 inhibitor, aggravated the effect of OA on hepG2, while this effect was reversed by CAY10602, a SIRT-1 activator. Further investigation demonstrated that SIRT-1 activity was involved in mitochondrial biogenesis through PGC-1α and participated to the balance of autophagy regulatory proteins. Conclusion In conclusion, in high-fat conditions, SIRT-1 regulates multiple cellular properties by influencing on mitochondrial physiology and lipid autophagy via the PGC-1α pathway. The SIRT-1/PGC-1α pathway could be targeted to develop new NAFLD therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document