Coupled-dynamic analysis of floating structures with polyester mooring lines

2008 ◽  
Vol 35 (17-18) ◽  
pp. 1676-1685 ◽  
Author(s):  
Arcandra Tahar ◽  
M.H. Kim
Author(s):  
M. D. Yang ◽  
B. Teng

A time-domain simulation method is developed for the coupled dynamic analysis of a spar platform with mooring lines. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface boundary condition and the free surface boundary condition, and Stokes perturbation procedure is then used to establish corresponding boundary value problems with time-independent boundaries. A higher order boundary element method is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by 4th order Adams-Bashforth-Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. For the mooring-line dynamics, a geometrically nonlinear finite element method using isoparametric cable element based on the total Lagrangian formulation is developed. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring lines are solved simultaneously using Newmark method. Numerical results including motions and tensions in the mooring lines are presented.


Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Reliability analysis of mooring lines requires an accurate prediction of extreme responses for large number of sea states even for a short-term based approach. In deep water, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been shown to give more accurate results but at a higher computational expense. Therefore, efficient computational tools are required for reliability analysis of mooring lines for deep water floating systems. Enhanced decoupled dynamic analysis method, in which the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring line, is an efficient method and provides results comparable in accuracy with the fully coupled dynamic analysis procedures. This paper presents the application of enhanced de-coupled dynamic analysis method for reliability assessment of mooring lines for deep water floating systems. For reliability analysis of mooring lines, the methodology presented in Ding et al. [5] is adopted. Reliability analysis of a critically loaded mooring line for a deep water classical spar floater under extreme environmental loads is performed using environmental contour approach. Mooring line tension time histories under various storm conditions are calculated using enhanced de-coupled dynamic analysis. The uncertainty in the predicted maximum mooring line load due to different storm events, variability in met-ocean conditions and numerical models is considered. Probability of failure and the corresponding reliability index of the mooring line are calculated. The impact of variability in predicted mooring line load, line capacities and factors of safety on mooring line reliability are studied. It is seen that enhanced de-coupled dynamic analysis, which predicts the mooring line loads as accurately as coupled dynamic analysis with lesser CPU time, can be used more efficiently for reliability assessment of mooring lines for deep water floating systems.


Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Efficient dynamic analysis of mooring lines and risers is necessary for deepwater floating systems that typically consist of a number of mooring lines and risers. In deepwater, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been proposed which can account for the coupling effects and consider most of the nonlinearities present in the problem. These methods have been shown to give more accurate results compared to traditional de-coupled analysis methods although they tend to be computationally more expensive. If the system has a large number of mooring lines and risers, it becomes very difficult and impractical to perform time domain coupled analysis. A number of efficient methodologies have therefore been proposed in the past to balance the accuracy of results with computational efficiency. Such methods include the frequency domain approach, combination of frequency and time domain methods, and combination of coupled and uncoupled analysis methodologies. Enhanced de-coupled dynamic analysis is an efficient method and is similar to the traditional de-coupled dynamic analysis method except that the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring lines. In this paper, dynamic analysis of mooring lines for a deep water classical spar floater under random waves is performed by using the enhanced de-coupled dynamic analysis method and the response statistics are compared with results obtained from coupled dynamic analysis. The spar is modeled as a rigid body with six degrees-of-freedom and the mooring lines are modeled as finite element assemblage of elastic rods. All major non-linearities and the dynamic interaction between spar and its mooring lines are considered while determining the tension time histories. Hinge connection is assumed at the fairleads. At every time step of the integration of equations of motion of the spar, a series of nonlinear dynamic analyses of the mooring lines is performed using a subcycling technique. From the analyses, it is found that the enhanced de-coupled dynamic analysis provides results comparable in accuracy with the results obtained from coupled dynamic analysis in terms of predicting the response statistics, but requires only one third of the computational time. Therefore, enhanced de-coupled dynamic analysis can be used for accurate prediction of mooring line dynamics for deep water floating systems.


2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2006 ◽  
Vol 33 (1) ◽  
pp. 93-117 ◽  
Author(s):  
Xiaohong Chen ◽  
Yu Ding ◽  
Jun Zhang ◽  
Pierre Liagre ◽  
John Niedzwecki ◽  
...  

1997 ◽  
Vol 119 (3) ◽  
pp. 151-157 ◽  
Author(s):  
Y.-L. Hwang

This paper presents a time domain analysis approach to evaluate the dynamic behavior of the catenary anchor leg mooring (CALM) system under the maximum operational condition when a tanker is moored to the terminal, and in the survival condition when the terminal is not occupied by a tanker. An analytical model, integrating tanker, hawser, buoy, and mooring lines, is developed to dynamically predict the extreme mooring loads and buoy orbital motions, when responding to the effect of wind, current, wave frequency, and wave drift response. Numerical results describing the dynamic behaviors of the CALM system in both shallow and deepwater situations are presented and discussed. The importance of the line dynamics and hawser coupled buoy-tanker dynamics is demonstrated by comparing the present dynamic analysis with catenary calculation approach. Results of the analysis are compared with model test data to validate the mathematical model presented.


2002 ◽  
Vol 124 (2) ◽  
pp. 104-109 ◽  
Author(s):  
Subrata K. Chakrabarti

A versatile and efficient numerical analysis is developed to compute the responses of a moored floating system composed of multiple floating structures. Structures such as tankers, semisubmersibles, FPSOs, SPARs, TLPs, and SPMs connected by mooring lines, connectors or fenders may be analyzed individually or collectively including multiple interaction. The analysis is carried out in the time domain assuming rigid body motion for the structures, and the solution is generated by a forward integration scheme. The analysis includes the nonlinearities in the excitation, damping, and restoring terms encountered in a typical mooring system configuration. It also allows for instabilities in the tower oscillation as well as slack mooring lines. Certain simplifications in the analysis have been made, which are discussed. The exciting forces in the analysis are wind, current, and waves (including a steady and an oscillating drift force), which are not necessarily collinear. The waves can be single frequency or composed of multiple frequency components. For regular waves either linear, stretched linear or fifth order theory may be used. The irregular wave may be included as a given spectral model (e.g., PM or JONSWAP). The vessels are free to respond to the exciting forces in six degrees of freedom—surge, sway, heave, roll, pitch, and yaw. The tower, when present, is free to respond in two degrees of freedom—oscillation and precession. The loads in the mooring lines are determined from prescribed tension-strain tables for the lines. Rigid mooring arms can be analyzed by allowing for compression in the load-strain table. Fenders may be input similarly through load compression tables. In order to establish the stability and accuracy of the solution, comparison of the results with linearized frequency domain analysis was made. The analysis is verified by several different model test results for different structure configurations in regular and random seas. Some of the interesting aspects of nonlinear system are shown with a few examples.


Sign in / Sign up

Export Citation Format

Share Document