Reliability Analysis of Mooring Lines for Deep Water Floating Systems

Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Reliability analysis of mooring lines requires an accurate prediction of extreme responses for large number of sea states even for a short-term based approach. In deep water, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been shown to give more accurate results but at a higher computational expense. Therefore, efficient computational tools are required for reliability analysis of mooring lines for deep water floating systems. Enhanced decoupled dynamic analysis method, in which the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring line, is an efficient method and provides results comparable in accuracy with the fully coupled dynamic analysis procedures. This paper presents the application of enhanced de-coupled dynamic analysis method for reliability assessment of mooring lines for deep water floating systems. For reliability analysis of mooring lines, the methodology presented in Ding et al. [5] is adopted. Reliability analysis of a critically loaded mooring line for a deep water classical spar floater under extreme environmental loads is performed using environmental contour approach. Mooring line tension time histories under various storm conditions are calculated using enhanced de-coupled dynamic analysis. The uncertainty in the predicted maximum mooring line load due to different storm events, variability in met-ocean conditions and numerical models is considered. Probability of failure and the corresponding reliability index of the mooring line are calculated. The impact of variability in predicted mooring line load, line capacities and factors of safety on mooring line reliability are studied. It is seen that enhanced de-coupled dynamic analysis, which predicts the mooring line loads as accurately as coupled dynamic analysis with lesser CPU time, can be used more efficiently for reliability assessment of mooring lines for deep water floating systems.

Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Efficient dynamic analysis of mooring lines and risers is necessary for deepwater floating systems that typically consist of a number of mooring lines and risers. In deepwater, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been proposed which can account for the coupling effects and consider most of the nonlinearities present in the problem. These methods have been shown to give more accurate results compared to traditional de-coupled analysis methods although they tend to be computationally more expensive. If the system has a large number of mooring lines and risers, it becomes very difficult and impractical to perform time domain coupled analysis. A number of efficient methodologies have therefore been proposed in the past to balance the accuracy of results with computational efficiency. Such methods include the frequency domain approach, combination of frequency and time domain methods, and combination of coupled and uncoupled analysis methodologies. Enhanced de-coupled dynamic analysis is an efficient method and is similar to the traditional de-coupled dynamic analysis method except that the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring lines. In this paper, dynamic analysis of mooring lines for a deep water classical spar floater under random waves is performed by using the enhanced de-coupled dynamic analysis method and the response statistics are compared with results obtained from coupled dynamic analysis. The spar is modeled as a rigid body with six degrees-of-freedom and the mooring lines are modeled as finite element assemblage of elastic rods. All major non-linearities and the dynamic interaction between spar and its mooring lines are considered while determining the tension time histories. Hinge connection is assumed at the fairleads. At every time step of the integration of equations of motion of the spar, a series of nonlinear dynamic analyses of the mooring lines is performed using a subcycling technique. From the analyses, it is found that the enhanced de-coupled dynamic analysis provides results comparable in accuracy with the results obtained from coupled dynamic analysis in terms of predicting the response statistics, but requires only one third of the computational time. Therefore, enhanced de-coupled dynamic analysis can be used for accurate prediction of mooring line dynamics for deep water floating systems.


Author(s):  
Xuliang Han ◽  
ShiSheng Wang ◽  
Bin Xie ◽  
Wenhui Xie ◽  
Weiwei Zhou

In order to predict the coupled motion and external wave load for the design of deepwater floating structure system, based on the three-dimensional time-domain potential flow theory, this paper present the indirect time-domain dynamic coupling method and the body nonlinear dynamic coupling method. The perturbation expansion theory is adopted to evaluate hydrodynamic on the fixed mean wetted body surface for the former method. The transient free surface Green function has been extended and applied to calculate the nonlinear hydrodynamic on the instantaneous wetted exact body surface for the latter method. The finite element model is employed to solve dynamic response of mooring line. Then asynchronous coupled method is adopted to achieve the coupled dynamic analysis of platform and mooring lines. The time-domain motion responses and spectrum analysis of Spar platform are verified and compared with the traditional indirect time-domain coupling dynamic method when the mooring system is completed. Also the time-domain motion responses and statistical characteristic of Spar platform are investigated with one mooring line broken in extreme sea condition. Some conclusions are obtained, that is, dynamic coupling effects are significant and transient position hydrodynamic calculation of platform has a great influence on the low frequency motion. The results also show that the influence on the global performance of mooring system is different when the broken line is in different place. A remarkable influence occurs when the broken mooring line is in the head-wave direction.


Author(s):  
Arcandra Tahar ◽  
Djoni Sidarta

This paper is a continuation of a series of investigation for the dual stiffness approach for polyester mooring lines. Tahar et. al. (2012) has presented the global performance comparison between the dual stiffness method and the traditional method for the Spar platform. As shown in that study, there are appreciable differences between the former and the later methods especially in lateral motions, which, however, result in little difference in SCR strength response. Is it because the Spar has better motion characteristics than other wet tree floating platforms such as the semisubmersible and FPSO? This paper will investigate the effect of the dual stiffness method and the traditional method to SCR response for a Semisubmersible platform. The fully coupled dynamic analysis tool CHARM3D has been modified to incorporate the dual stiffness approach. Two axial stiffnesses (EA) of polyester line, post installation (static) stiffness and storm (dynamic) stiffness have been convoluted into a dual stiffness to represent the total response of the floating platform in a single run. In the traditional method, the analyses are done twice, one run for each stiffness. Then, the extremes from each run are used as governing values for design. The SCR will be modeled and analyzed using ABAQUS software.


2011 ◽  
Vol 199-200 ◽  
pp. 534-537
Author(s):  
Wei Tao Zhao ◽  
Dong Lin Yao ◽  
Wei Ping Zhang

Based on reliability analysis theory, traditional interval reliability analysis method is improved by take the smaller value of probability reliability and interval reliability as the results of reliability assessment, which makes the reliability assessment results more fit engineering cases. The improved model is applied to reliability assessment of small sample products with degradation characteristics, and results of assessment are compared with existing methods. A numerical example is considered, the results show that the assessment results by the method proposed in the paper is reasonable and believable.


Author(s):  
M. D. Yang ◽  
B. Teng

A time-domain simulation method is developed for the coupled dynamic analysis of a spar platform with mooring lines. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface boundary condition and the free surface boundary condition, and Stokes perturbation procedure is then used to establish corresponding boundary value problems with time-independent boundaries. A higher order boundary element method is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by 4th order Adams-Bashforth-Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. For the mooring-line dynamics, a geometrically nonlinear finite element method using isoparametric cable element based on the total Lagrangian formulation is developed. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring lines are solved simultaneously using Newmark method. Numerical results including motions and tensions in the mooring lines are presented.


Author(s):  
Hamid Sedghi ◽  
Mehrdad Kimiaei

Dynamic characteristics of mooring lines play an important role in overall structural response and fatigue design of mooring systems. Full dynamic analysis including line dynamics is a vital part of fatigue design process although in time domain it needs excessive computational efforts. For fatigue analysis of mooring lines where hundreds of different environmental loads have to be checked, alternative analysis approach such as quasi-dynamic analysis with implicit inclusion of the line dynamic effects are used widely in engineering practice. This paper presents the results of series of case studies on the effects of various mooring line design parameters on the line dynamics as well as the mooring line dynamic fatigue response. Various mooring line composition types (all chain and chain-polyester-chain) used in different mooring configurations (catenary, semi-taut and taut) with variable range of mooring line pretensions connected to a floater in shallow and deep water depths are studied. Ratios of fatigue damage results between dynamic and quasi-dynamic results as well as the relation between fatigue damage and statistical characteristics of the line dynamic responses for different line configurations and load cases are investigated in detail.


Author(s):  
Yuan Hongtao ◽  
Zeng Ji ◽  
Chen Gang ◽  
Mo Jian ◽  
Zhao Nan

This paper applies 3D potential theory and non-linear time domain coupled analysis method to analyze motion response of FPSO and dynamic response of mooring line of single mooring system. In addition, respectively to calculate mooring line tension of tension type and composite mooring line type and added buoy in mooring line. There the paper analyze different mooring lines to affect on the weight of single point mooring system of deepwater FPSO. Which expects to provide a theoretical basis for single point mooring system design and weight control.


2012 ◽  
Vol 34 ◽  
pp. 107-115 ◽  
Author(s):  
R. Montes-Iturrizaga ◽  
E. Heredia-Zavoni ◽  
F. Silva-González ◽  
D. Straub

Sign in / Sign up

Export Citation Format

Share Document