Dynamics of unsteady compressible cavitating flows associated with the cavity shedding

2020 ◽  
Vol 209 ◽  
pp. 107025
Author(s):  
Changchang Wang ◽  
Guoyu Wang ◽  
Biao Huang
2001 ◽  
Vol 123 (4) ◽  
pp. 850-856 ◽  
Author(s):  
Wei Gu ◽  
Yousheng He ◽  
Tianqun Hu

Hydroacoustics of the transcritical cavitating flows on a NACA16012 hydrofoil at a 2/5/8-degree angle of attack and axisymmetric bodies with hemispherical and 45-degree conical headforms were studied, and the process of cloud cavitation shedding was observed by means of high-speed cinegraphy. By expressing the cavitation noise with partial acoustic level, it is found that the development of cavitation noise varies correspondingly with cavitation patterns. The instability of cavitation is a result of cavity-flow interaction, and is mainly affected by the liquid flow rather than by the cavitation bubbles. A periodic flow structure with a large cavitation vortex is observed and found to be responsible for inducing the reentrant-jet and consequent cavitation shedding, and explains the mechanism of periodic cavitation shedding from a new viewpoint. New terms for the three stages, growing, hatching and breaking, are used to describe the process of cavity shedding.


2016 ◽  
Vol 33 (1) ◽  
pp. 202-216 ◽  
Author(s):  
Yu Zhao ◽  
Guoyu Wang ◽  
Biao Huang

Purpose – The purpose of this paper is to assess the predictive capability of the streamline curvature correction model (CCM) and investigate the unsteady vortex behavior of the cloud cavitating flows around a hydrofoil. Design/methodology/approach – The design of the paper is based on introducing the curvature correction method to the original k-ε model. Calculations of unsteady cloud cavitating flows around a Clark-Y hydrofoil are performed using both the CCM and the baseline model. Findings – Compared with the baseline model, better agreements are observed between the predictions of the CCM model and experimental data, especially the cavity shedding process. Based on the computations, it is demonstrated that streamline curvature correction of the CCM model can effectively decrease predicted turbulence kinetic energy and eddy viscosity in cavity shedding region. This leads to the better prediction for the recirculation zone located downstream of the attached cavity, and dynamics of this recirculation zone contribute to the formation and development of the re-entrant jet. Originality/value – The authors apply streamline curvature correction to the calculations of unsteady cloud cavitating flows and discuss the interactions between the cavitation unsteadiness and vortex structures to get an insight of the correction mechanics.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2768 ◽  
Author(s):  
Changli Hu ◽  
Guanghao Chen ◽  
Long Yang ◽  
Guoyu Wang

In this paper, the turbulent attached cavitating flows around two different twisted hydrofoils, named as NACA0009 and Clark-y, are studied numerically, with emphasis on cavity shedding dynamic behavior and the turbulence flow structures. The computational method of large eddy simulation (LES) coupled with a homogeneous cavitation model is applied and assessed by previous experimental data. It was found that the predicted results were in good agreement with that of the experiment. The unsteady cavity morphology of the two hydrofoils undergoes a similar quasi-periodic process, but has different shedding dynamic behavior. The scale of the U-type shedding structures forming on the suction surface of NACA0009 is larger than that of Clark-y. This phenomenon is also present in the iso-surface distributions of Q-criterion. Otherwise, the time-averaged cavity morphology is dramatically different for the two hydrofoils, and it is found that the attached location of the cavity is closely related to the hydrofoil geometry. The time fluctuation of the lift force coefficients is affected significantly by the cavity shedding dynamics. Compared with NACA0009, the lift force of Clark-y shows more fluctuation, due to its complicated shedding behavior. Further analysis of the turbulent structure indicates that the more violent shedding behaviors can induce higher levels of turbulence velocity fluctuations.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Biao Huang ◽  
Yin L. Young ◽  
Guoyu Wang ◽  
Wei Shyy

The objective of this paper is to apply combined experimental and computational modeling to investigate unsteady sheet/cloud cavitating flows. In the numerical simulations, a filter-based density corrected model (FBDCM) is introduced to regulate the turbulent eddy viscosity in both the cavitation regions on the foil and in the wake, which is shown to be critical in accurately capturing the unsteady cavity shedding process, and the corresponding velocity and vorticity dynamics. In the experiments, high-speed video and particle image velocimetry (PIV) technique are used to measure the flow velocity and vorticity fields, as well as cavitation patterns. Results are presented for a Clark-Y hydrofoil fixed at an angle of attack of α = 8 deg at a moderate Reynolds number, Re = 7 × 105, for both subcavitating and sheet/cloud cavitating conditions. The results show that for the unsteady sheet/cloud cavitating case, the formation, breakup, shedding, and collapse of the sheet/cloud cavity lead to substantial increase in turbulent velocity fluctuations in the cavitating region around the foil and in the wake, and significantly modified the wake patterns. The turbulent boundary layer thickness is found to be much thicker, and the turbulent intensities are much higher in the sheet/cloud cavitating case. Compared to the wetted case, the wake region becomes much broader and is directed toward the suction side instead of the pressure side for the sheet/cloud cavitation case. The periodic formation, breakup, shedding, and collapse of the sheet/cloud cavities, and the associated baroclinic and viscoclinic torques, are shown to be important mechanisms for vorticity production and modification.


2020 ◽  
Vol 32 (1) ◽  
pp. 61-79
Author(s):  
Vinay Kumar Gupta ◽  
Alok Khaware ◽  
K. V. S. S. Srikanth ◽  
Jay Sanyal

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042199886
Author(s):  
Wenzhe Kang ◽  
Lingjiu Zhou ◽  
Dianhai Liu ◽  
Zhengwei Wang

Previous researches has shown that inlet backflow may occur in a centrifugal pump when running at low-flow-rate conditions and have nonnegligible effects on cavitation behaviors (e.g. mass flow gain factor) and cavitation stability (e.g. cavitation surge). To analyze the influences of backflow in impeller inlet, comparative studies of cavitating flows are carried out for two typical centrifugal pumps. A series of computational fluid dynamics (CFD) simulations were carried out for the cavitating flows in two pumps, based on the RANS (Reynolds-Averaged Naiver-Stokes) solver with the turbulence model of k- ω shear stress transport and homogeneous multiphase model. The cavity volume in Pump A (with less reversed flow in impeller inlet) decreases with the decreasing of flow rate, while the cavity volume in Pump B (with obvious inlet backflow) reach the minimum values at δ = 0.1285 and then increase as the flow rate decreases. For Pump A, the mass flow gain factors are negative and the absolute values increase with the decrease of cavitation number for all calculation conditions. For Pump B, the mass flow gain factors are negative for most conditions but positive for some conditions with low flow rate coefficients and low cavitation numbers, reaching the minimum value at condition of σ = 0.151 for most cases. The development of backflow in impeller inlet is found to be the essential reason for the great differences. For Pump B, the strong shearing between backflow and main flow lead to the cavitation in inlet tube. The cavity volume in the impeller decreases while that in the inlet tube increases with the decreasing of flow rate, which make the total cavity volume reaches the minimum value at δ = 0.1285 and then the mass flow gain factor become positive. Through the transient calculations for cavitating flows in two pumps, low-frequency fluctuations of pressure and flow rate are found in Pump B at some off-designed conditions (e.g. δ = 0.107, σ = 0.195). The relations among inlet pressure, inlet flow rate, cavity volume, and backflow are analyzed in detail to understand the periodic evolution of low-frequency fluctuations. Backflow is found to be the main reason which cause the positive value of mass flow gain factor at low-flow-rate conditions. Through the transient simulations of cavitating flow, backflow is considered as an important aspect closely related to the hydraulic stability of cavitating pumping system.


Sign in / Sign up

Export Citation Format

Share Document