Interaction of oblique water waves with a single chamber caisson type breakwater for a two-layer fluid flow over an elastic bottom

2021 ◽  
Vol 238 ◽  
pp. 109766
Author(s):  
Koushik Kanti Barman ◽  
Swaroop Nandan Bora
2016 ◽  
Vol 30 (32n33) ◽  
pp. 1650383 ◽  
Author(s):  
Xue-Hui Zhao ◽  
Bo Tian ◽  
Jun Chai ◽  
Yu-Xiao Wu ◽  
Yong-Jiang Guo

Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients [Formula: see text], [Formula: see text] and [Formula: see text] during the propagation, kink- and anti-bell-shape solitons are obtained when [Formula: see text], anti-kink- and bell-shape solitons are obtained when [Formula: see text]; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.


2011 ◽  
Vol 674 ◽  
pp. 522-577 ◽  
Author(s):  
DJAMEL LAKEHAL ◽  
PETAR LIOVIC

Large-eddy and interface simulation using an interface tracking-based multi-fluid flow solver is conducted to investigate the breaking of steep water waves on a beach of constant bed slope. The present investigation focuses mainly on the ‘weak plunger’ breaking wave type and provides a detailed analysis of the two-way interaction between the mean fluid flow and the sub-modal motions, encompassing wave dynamics and turbulence. The flow is analysed from two points of views: mean to sub-modal exchange, and wave to turbulence interaction within the sub-modal range. Wave growth and propagation are due to energy transfer from the mean flow to the waves, and transport of mean momentum by these waves. The vigorous downwelling–upwelling patterns developing at the head and tail of each breaker are shown to generate both negative- and positive-signed energy exchange contributions in the thin sublayer underneath the water surface. The details of these exchange mechanisms are thoroughly discussed in this paper, together with the interplay between three-dimensional small-scale breaking associated with turbulence and the dominant two-dimensional wave motion. A conditional zonal analysis is proposed for the first time to understand the transient mechanisms of turbulent kinetic energy production, decay, diffusion and transport and their dependence and/or impact on surface wrinkling over the entire breaking process. The simulations provide a thorough picture of air–liquid coherent structures that develop over the breaking process, and link them to the transient mechanisms responsible for their local incidence.


1998 ◽  
Vol 08 (PR2) ◽  
pp. Pr2-805-Pr2-808
Author(s):  
A. Basak

Sign in / Sign up

Export Citation Format

Share Document