scholarly journals Turbulence structure and interaction with steep breaking waves

2011 ◽  
Vol 674 ◽  
pp. 522-577 ◽  
Author(s):  
DJAMEL LAKEHAL ◽  
PETAR LIOVIC

Large-eddy and interface simulation using an interface tracking-based multi-fluid flow solver is conducted to investigate the breaking of steep water waves on a beach of constant bed slope. The present investigation focuses mainly on the ‘weak plunger’ breaking wave type and provides a detailed analysis of the two-way interaction between the mean fluid flow and the sub-modal motions, encompassing wave dynamics and turbulence. The flow is analysed from two points of views: mean to sub-modal exchange, and wave to turbulence interaction within the sub-modal range. Wave growth and propagation are due to energy transfer from the mean flow to the waves, and transport of mean momentum by these waves. The vigorous downwelling–upwelling patterns developing at the head and tail of each breaker are shown to generate both negative- and positive-signed energy exchange contributions in the thin sublayer underneath the water surface. The details of these exchange mechanisms are thoroughly discussed in this paper, together with the interplay between three-dimensional small-scale breaking associated with turbulence and the dominant two-dimensional wave motion. A conditional zonal analysis is proposed for the first time to understand the transient mechanisms of turbulent kinetic energy production, decay, diffusion and transport and their dependence and/or impact on surface wrinkling over the entire breaking process. The simulations provide a thorough picture of air–liquid coherent structures that develop over the breaking process, and link them to the transient mechanisms responsible for their local incidence.

The aim of this paper is to elucidate the microwave reflectivity properties of small-scale breaking water waves, which are a widespread feature of the wind-driven air-sea interface. By using a laboratory wave flume in which a small-scale breaking wave was held stationary against an opposing current, a detailed investigation of the microwave reflectivity at X-band revealed significantly enhanced levels of local backscattered power from the crest regions of small-scale breaking waves. A surprising level of organization is discovered in the hydrodynamic disturbances generated in such breaking zones. Their wavenumber-frequency spectral properties are reported in detail, from which it is concluded that the microwave reflectivity is consistent with Bragg scattering from these disturbances. The application of these findings to active microwave remote sensing of the oceans is discussed.


1999 ◽  
Vol 394 ◽  
pp. 303-337 ◽  
Author(s):  
A. VERNET ◽  
G. A. KOPP ◽  
J. A. FERRÉ ◽  
FRANCESC GIRALT

Simultaneous velocity and temperature measurements were made with rakes of sensors that sliced a slightly heated turbulent wake in the spanwise direction, at different lateral positions 150 diameters downstream of the cylinder. A pattern recognition analysis of hotter-to-colder transitions was performed on temperature data measured at the mean velocity half-width. The velocity data from the different ‘slices’ was then conditionally averaged based on the identified temperature events. This procedure yielded the topology of the average three-dimensional large-scale structure which was visualized with iso-surfaces of negative values of the second eigenvector of [S2+Ω2]. The results indicate that the average structure of the velocity fluctuations (using a triple decomposition of the velocity field) is found to be a shear-aligned ring-shaped vortex. This vortex ring has strong outward lateral velocities in its symmetry plane which are like Grant's mixing jets. The mixing jet region extends outside the ring-like vortex and is bounded by two foci separated in the spanwise direction and an upstream saddle point. The two foci correspond to what has been previously identified in the literature as the double rollers.The ring vortex extracts energy from the mean flow by stretching in the mixing jet region just upstream of the ring boundary. The production of the small-scale (incoherent) turbulence by the coherent field and one-component energy dissipation rate occur just downstream of the saddle point within the mixing jet region. Incoherent turbulence energy is extracted from the mean flow just outside the mixing jet region, but within the core of the structure. These processes are highly three-dimensional with a spanwise extent equal to the mean velocity half-width.When a double decomposition is used, the coherent structure is found to be a tube-shaped vortex with a spanwise extent of about 2.5l0. The double roller motions are integral to this vortex in spite of its shape. Spatial averages of the coherent velocity field indicate that the mixing jet region causes a deficit of mean streamwise momentum, while the region outside the foci of the double rollers has a relatively small excess of streamwise momentum.


2001 ◽  
Vol 449 ◽  
pp. 313-339 ◽  
Author(s):  
OLIVER BÜHLER ◽  
TIVON E. JACOBSON

We present a theoretical and numerical investigation of longshore currents driven by breaking waves on beaches, especially barred beaches. The novel feature considered here is that the wave envelope is allowed to vary in the alongshore direction, which leads to the generation of strong dipolar vortex structures where the waves are breaking. The nonlinear evolution of these vortex structures is studied in detail using a simple analytical theory to model the effect of a sloping beach. One of our findings is that the vortex evolution provides a robust mechanism through which the preferred location of the longshore current can move shorewards from the location of wave breaking. Such current dislocation is an often-observed (but ill-understood) phenomenon on real barred beaches.To underpin our results, we present a comprehensive theoretical description of the relevant wave–mean interaction theory in the context of a shallow-water model for the beach. Therein we link the radiation-stress theory of Longuet-Higgins & Stewart to recently established results concerning the mean vorticity generation due to breaking waves. This leads to detailed results for the entire life-cycle of the mean-flow vortex evolution, from its initial generation by wave breaking until its eventual dissipative decay due to bottom friction.In order to test and illustrate our theory we also present idealized nonlinear numerical simulations of both waves and vortices using the full shallow-water equations with bottom topography. In these simulations wave breaking occurs through shock formation of the shallow-water waves. We note that because the shallow-water equations also describe the two-dimensional flow of a homentropic perfect gas, our theoretical and numerical results can also be applied to nonlinear acoustics and sound–vortex interactions.


2021 ◽  
Vol 9 (6) ◽  
pp. 585
Author(s):  
Minghao Wu ◽  
Leen De Vos ◽  
Carlos Emilio Arboleda Chavez ◽  
Vasiliki Stratigaki ◽  
Maximilian Streicher ◽  
...  

The present work introduces an analysis of the measurement and model effects that exist in monopile scour protection experiments with repeated small scale tests. The damage erosion is calculated using the three dimensional global damage number S3D and subarea damage number S3D,i. Results show that the standard deviation of the global damage number σ(S3D)=0.257 and is approximately 20% of the mean S3D, and the standard deviation of the subarea damage number σ(S3D,i)=0.42 which can be up to 33% of the mean S3D. The irreproducible maximum wave height, chaotic flow field and non-repeatable armour layer construction are regarded as the main reasons for the occurrence of strong model effects. The measurement effects are limited to σ(S3D)=0.039 and σ(S3D,i)=0.083, which are minor compared to the model effects.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


1989 ◽  
Vol 111 (3) ◽  
pp. 466-478 ◽  
Author(s):  
A. E. Catania ◽  
A. Mittica

In addition to the frequently used statistical ensemble-average, non-Reynolds filtering operators have long been proposed for nonstationary turbulent quantities. Several techniques for the reduction of velocity data acquired in the cylinder of internal combustion reciprocating engines have been developed by various researchers in order to separate the “mean flow” from the “fluctuating motion,” cycle by cycle, and to analyze small-scale engine turbulence by statistical methods. Therefore a thorough examination of these techniques and a detailed comparison between them would seem to be a preliminary step in attempting a general study of unconventional averaging procedures for reciprocating engine flow application. To that end, in the present work, five different cycle-resolved data reduction methods and the conventional ensemble-average were applied to the same in-cylinder velocity data, so as to review and compare them. One of the methods was developed by the authors. The data were acquired in the cylinder of a direct-injection automotive diesel engine, during induction and compression strokes, using an advanced hot-wire anemometry technique. Correlation and spectral analysis of the engine turbulence, as determined from the data with the different procedures, were also performed.


1975 ◽  
Vol 67 (2) ◽  
pp. 257-271 ◽  
Author(s):  
A. E. Perry ◽  
C. J. Abell

Using hot-wire-anemometer dynamic-calibration methods, fully developed pipe-flow turbulence measurements have been taken in the Reynolds-number range 80 × 103 to 260 × 103. Comparisons are made with the results of previous workers, obtained using static-calibration methods. From the dynamic-calibration results, a consistent and systematic correlation for the distribution of turbulence quantities becomes evident, the resulting correlation scheme being similar to that which has previously been established for the mean flow. The correlations reported have been partly conjectured in the past by many workers but convincing experimental evidence has always been masked by the scatter in the results, no doubt caused by the difficulties associated with static-calibration methods, particularly the earlier ones. As for the mean flow, the turbulence intensity measurements appear to collapse to an inner and outer law with a region of overlap, from which deductions can be made using dimensional arguments. The long-suspected similarity of the turbulence structure and its consistency with the established mean-flow similarity appears to be confirmed by the measurements reported here.


2018 ◽  
Vol 40 ◽  
pp. 05039
Author(s):  
Priscilla Williams ◽  
Vesselina Roussinova ◽  
Ram Balachandar

This paper focuses on the turbulence structure in a non-uniform, gradually varied, sub-critical open channel flow (OCF) on a rough bed. The flow field is analysed under accelerating, near-uniform and decelerating conditions. Information for the flow and turbulence parameters was obtained at multiple sections and planes using two different techniques: two-component laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Different outer region velocity scaling methods were explored for evaluation of the local friction velocity. Analysis of the mean velocity profiles showed that the overlap layer exists for all flow cases. The outer layer of the decelerated velocity profile was strongly affected by the pressure gradient, where a large wake was noted. Due to the prevailing nature of the experimental setup it was found that the time-averaged flow quantities do not attained equilibrium conditions and the flow is spatially heterogeneous. The roughness generally increases the friction velocity and its effect was stronger than the effect of the pressure gradient. It was found that for the decelerated flow section over a rough bed, the mean flow and turbulence intensities were affected throughout the flow depth. The flow features presented in this study can be used to develop a model for simulating flow over a block ramp. The effect of the non-uniformity and roughness on turbulence intensities and Reynolds shear stresses was further investigated.


1991 ◽  
Vol 224 ◽  
pp. 601-623 ◽  
Author(s):  
M. R. Loewen ◽  
W. K. Melville

An experimental study of the microwave backscatter and acoustic radiation from breaking waves is reported. It is found that the averaged microwave and acoustic measurements correlate with the dynamics of wave breaking. Both the mean-square acoustic pressure and the backscattered microwave power correlate with the wave slope and dissipation, for waves of moderate slope (S < 0.28). The backscattered power and the mean-square pressure are also found to correlate strongly with each other. As the slope and wavelength of the breaking wave packet is increased, both the backscattered power and the mean-square pressure increase. It is found that a large portion of the backscattered microwave power precedes the onset of sound production and visible breaking. This indicates that the unsteadiness of the breaking process is important and that the geometry of the wave prior to breaking may dominate the backscattering. It is observed that the amount of acoustic energy radiated by an individual breaking wave scaled with the amount of mechanical energy dissipated during breaking. These laboratory results are compared to the field experiments of Farmer & Vagle (1988), Crowther (1989) and Jessup et al. (1990).


Sign in / Sign up

Export Citation Format

Share Document