Modification of effective angle of attack on hydrofoil power extraction

2021 ◽  
Vol 240 ◽  
pp. 109919
Author(s):  
Guanghua He ◽  
Weijie Mo ◽  
Yun Gao ◽  
Zhigang Zhang ◽  
Jiadong Wang ◽  
...  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
David Balam-Tamayo ◽  
Carlos Málaga ◽  
Bernardo Figueroa-Espinoza

The performance and flow around an oscillating foil device for current energy extraction (a wingmill) was studied through numerical simulations. OpenFOAM was used in order to study the two-dimensional (2D) flow around a wingmill. A closed loop control law was coded in order to follow a reference angle of attack. The objective of this control law is to modify the angle of attack in order to enhance the lift force (and increase power extraction). Dimensional analysis suggests a compromise between the generator (or damper) stiffness and actuator/control gains, so a parametric study was carried out while using a new dimensionless number, called B, which represents this compromise. It was found that there is a maximum on the efficiency curve in terms of the aforementioned dimensionless parameter. The lessons that are learned from this fluid-structure and feedback coupling are discussed; this interaction, combined with the feedback dynamics, may trigger dynamic stall, thus decreasing the performance. Moreover, if the control strategy is not carefully selected, then the energy spent on the actuator may affect efficiency considerably. This type of simulation could allow for the system identification, control synthesis, and optimization of energy harvesting devices in future studies.


2013 ◽  
Vol 10 (2) ◽  
pp. 99-108 ◽  
Author(s):  
J. A. Esfahani ◽  
E. Barati ◽  
Hamid Reza Karbasian

In flapping underwater vehicles the propulsive performance of harmonically sinusoidal heaving and pitching foil will be degraded by some awkward changes in effective angle of attack profile, as the Strouhal number increases. This paper surveys different angle of attack profiles (Sinusoidal, Square, Sawtooth and Cosine) and considers their thrust production ability. In the wide range of Strouhal numbers, thrust production of Square profile is considerable but it has a discontinuity in heave velocity profile, in which an infinite acceleration exists. This problem poses a significant defect in control of flapping foil. A novel profile function is proposed to omit sharp changes in heave velocity and acceleration. Furthermore, an optimum profile is found for different Strouhal numbers with respect to Square angle of attack profile.DOI: http://dx.doi.org/10.3329/jname.v10i2.14229


Author(s):  
Yann Staelens ◽  
F. Saeed ◽  
I. Paraschivoiu

The paper presents three modifications for an improved performance in terms of increased power output of a straight-bladed VAWT by varying its pitch. Modification I examines the performance of a VAWT when the local angle of attack is kept just below the stall value throughout its rotation cycle. Although this modification results in a very significant increase in the power output for higher wind speeds, it requires abrupt changes in the local angle of attack making it physically and mechanically impossible to realize. Modification II improves upon the first by replacing the local angle of attack by the blade static-stall angle only when the former exceeds the latter. This step eliminates the two jumps in the local effective angle of attack curve but at the cost of a slight decrease in the power output. Moreover, it requires a discontinuous angle of attack correction function which may still be practically difficult to implement and also result in an early fatigue. Modification III overcomes the limitation of the second by ensuring a continuous variation in the local angle of attack correction during the rotation cycle through the use of a sinusoidal function. Although the power output obtained by using this modification is less than the two preceding ones, it has the inherent advantage of being practically feasible.


2015 ◽  
Vol 767 ◽  
pp. 782-810 ◽  
Author(s):  
D. J. Garmann ◽  
M. R. Visbal

AbstractA canonical study is developed to investigate the unsteady interactions of a streamwise-oriented vortex impinging upon a finite surface using high-fidelity simulation. As a model problem, an analytically defined vortex superimposed on a free stream is convected towards an aspect-ratio-six ($\mathit{AR}=6$) plate oriented at an angle of ${\it\alpha}=4^{\circ }$ and Reynolds number of $\mathit{Re}=20\,000$ in order to characterize the unsteady modes of interaction resulting from different spanwise positions of the incoming vortex. Outboard, tip-aligned and inboard positioning are shown to produce three distinct flow regimes: when the vortex is positioned outboard of, but in close proximity to, the wingtip, it pairs with the tip vortex to form a dipole that propels itself away from the plate through mutual induction, and also leads to an enhancement of the tip vortex. When the incoming vortex is aligned with the wingtip, the tip vortex is initially strengthened by the proximity of the incident vortex, but both structures attenuate into the wake as instabilities arise in the pair’s feeding sheets from the entrainment of opposite-signed vorticity into either structure. Finally, when the incident vortex is positioned inboard of the wingtip, the vortex bifurcates in the time-mean sense with portions convecting above and below the wing, and the tip vortex is mostly suppressed. The time-mean bifurcation is actually a result of an unsteady spiralling instability in the vortex core that reorients the vortex as it impacts the leading edge, pinches off, and alternately attaches to either side of the wing. The increased effective angle of attack inboard of impingement enhances the three-dimensional recirculation region created by the separated boundary layer off the leading edge which draws fluid from the incident vortex inboard and diminishes its impact on the outboard section of the wing. The slight but remaining downwash present outboard of impingement reduces the effective angle of attack in that region, resulting in a small separation bubble on either side of the wing in the time-mean solution, effectively unloading the tip outboard of impingement and suppressing the tip vortex. All incident vortex positions provide substantial increases in the wing’s lift-to-drag ratio; however, significant sustained rolling moments also result. As the vortex is brought inboard, the rolling moment diminishes and eventually switches sign as the reduced outboard loading balances the augmented sectional lift inboard of impingement.


2019 ◽  
Vol 881 ◽  
pp. 313-364 ◽  
Author(s):  
Casey M. Harwood ◽  
Mario Felli ◽  
Massimo Falchi ◽  
Steven L. Ceccio ◽  
Yin L. Young

Compliant lift-generating surfaces have widespread applications as marine propellers, hydrofoils and control surfaces, and the fluid–structure interactions (FSI) of such systems have important effects upon their performance and stability. Multi-phase flows like cavitation and ventilation alter the hydrodynamic and hydroelastic behaviours of lifting surfaces in ways that are not yet completely understood. This paper describes experiments on one rigid and two flexible variants of a vertical surface-piercing hydrofoil in wetted, ventilating and cavitating conditions. Tests were conducted in a towing tank and a free-surface cavitation channel. This work, which is Part 1 of a two-part series, examines the passive, or flow-induced, fluid–structure interactions of the hydrofoils. Four characteristic flow regimes are described: fully wetted, partially ventilated, partially cavitating and fully ventilated. Hydroelastic coupling is shown to increase the hydrodynamic lift and yawing moments across all four flow regimes by augmenting the effective angle of attack. The effective angle of attack, which was derived using a beam model to account for the effect of spanwise twisting deflections, effectively collapses the hydrodynamic load coefficients for the three hydrofoils. A generalized cavitation parameter, using the effective angle of attack, is used to collapse the lift and moment coefficients for all trials at a single immersed aspect ratio, smoothly bridging the four distinct flow regimes. None of the hydrofoils approached the static divergence condition, which occurs when the hydrodynamic stiffness negates the structural stiffness, but theory and experiments both show that ventilation increases the divergence speed by reducing the hydrodynamic twisting moment about the elastic axis. Coherent vortex shedding from the blunt trailing edge of the hydrofoil causes vortex-induced vibration at an approximately constant Strouhal number of 0.275 (based on the trailing edge thickness), and leads to amplified response at lock-in, when the vortex-shedding frequency approaches one of the resonant modal frequencies of the coupled fluid–structure system.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 59 ◽  
Author(s):  
Alexander Gehrke ◽  
Guillaume Guyon-Crozier ◽  
Karen Mulleners

The pitching kinematics of an experimental hovering flapping wing setup are optimized by means of a genetic algorithm. The pitching kinematics of the setup are parameterized with seven degrees of freedom to allow for complex non-linear and non-harmonic pitching motions. Two optimization objectives are considered. The first objective is maximum stroke average efficiency, and the second objective is maximum stroke average lift. The solutions for both optimization scenarios converge within less than 30 generations based on the evaluation of their fitness. The pitching kinematics of the best individual of the initial and final population closely resemble each other for both optimization scenarios, but the optimal kinematics differ substantially between the two scenarios. The most efficient pitching motion is smoother and closer to a sinusoidal pitching motion, whereas the highest lift-generating pitching motion has sharper edges and is closer to a trapezoidal motion. In both solutions, the rotation or pitching motion is advanced with respect to the sinusoidal stroke motion. Velocity field measurements at selected phases during the flapping motions highlight why the obtained solutions are optimal for the two different optimization objectives. The most efficient pitching motion is characterized by a nearly constant and relatively low effective angle of attack at the start of the half stroke, which supports the formation of a leading edge vortex close to the airfoil surface, which remains bound for most of the half stroke. The highest lift-generating pitching motion has a larger effective angle of attack, which leads to the generation of a stronger leading edge vortex and higher lift coefficient than in the efficiency optimized scenario.


2010 ◽  
Vol 24 (13) ◽  
pp. 1353-1356
Author(s):  
QING XIAO ◽  
WEI LIAO ◽  
HUA-SHU DOU

In this paper, numerical investigation was conducted for an oscillating NACA0012 foil combining the pitching and plunging motions. The plunging follows a sinusoidal motion while the pitching trajectory is controlled by achieving the resultant effective angle of attack (AOA) to be a harmonic cosine form. Computations were conducted over a range of the Strouhal number (St), different maximum effective AOA and different phase difference between pitching and plunging (ψ). Results show that, at higher St, significant improvement on propulsion performance has been achieved when the effective AOA profile maintains a harmonic cosine form by controlling the pitching motion of the foil.


2015 ◽  
Vol 776 ◽  
pp. 316-333 ◽  
Author(s):  
Eric Limacher ◽  
David E. Rival

As an abstraction of natural samara flight, steadily rotating plates in a free-stream flow have been studied. Particle image velocimetry on span-normal planes has been conducted to show that increasing rotation, as captured by the dimensionless parameter of tip speed ratio, causes a transition of the mean wake topology from that of a bluff body to that of a stable leading-edge vortex. Despite its notable effect on topology, a change in tip speed ratio has negligible effect on leading-edge circulation at a given spanwise position, local effective angle of attack and local effective velocity. The effective angle-of-attack distribution was held constant at different tip speed ratios by comparing rotating plates with different twist profiles. The shear-layer velocity profile at the leading edge was also resolved, allowing quantification of the vorticity flux passing through the leading-edge shear layer. Interestingly, the observed equilibrium values of circulation are not sensitive to changes in shear-layer vorticity flux.


Sign in / Sign up

Export Citation Format

Share Document