scholarly journals Numerical study on the flow environment for a novel design of net cage with a shielding device

2022 ◽  
Vol 243 ◽  
pp. 110345
Author(s):  
Hang-Fei Liu ◽  
Chun-Wei Bi ◽  
Zhijing Xu ◽  
Yun-Peng Zhao
2015 ◽  
Vol 29 (3) ◽  
pp. 401-414 ◽  
Author(s):  
Chun-wei Bi ◽  
Yun-peng Zhao ◽  
Guo-hai Dong

Author(s):  
Oleg V. Gendelman ◽  
Grigori Sigalov ◽  
Mercedes Mane ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis ◽  
...  

We introduce a novel type of the nonlinear energy sink (NES) designed as an eccentric mass rotating within a horizontal plane. The gravity is not a factor here, therefore such a rotator has no eigenfrequency and can inertially couple and resonate with any mode of the primary system. The dynamics of the system consisting of a primary linear oscillator and the eccentric rotator is rich beyond expectations and features multiple resonances and chaotic modes. A numerical study shows that the system, when subject to high impulsive loads, inevitably enters a 1:1 resonance that enables highly efficient targeted energy transfer from the primary mass to the NES. The results of an experimental investigation are in good agreement with the analytical and numerical estimates.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6330
Author(s):  
Byunghui Kim ◽  
Kuisoon Kim ◽  
Seokho Kim

Parallel flow heat exchangers with manifolds are widely used in various industries owing to their compact size and ease of application. Research has been conducted to understand their flow characteristics and improve flow distribution and pressure drop performance; however, it is difficult to derive generalized improvements under different conditions for each application. This study proposes a novel design to improve the flow characteristics of a compact heat exchanger with a sudden expansion area of a dividing manifold and uses computational fluid dynamics simulation to verify it. The abrupt cross-sectional area change in the dividing manifold induces a jet flow near the entry region, which causes the flow maldistribution of the first few parallel tubes. To improve the efficiency of the dividing manifold, simple and novel designs with a converging-diverging area in the manifold header have been proposed. Parametric studies on the novel designs show improvements of up to 37.5% and 52.0% flow uniformity and 2.65% and 0.74% pressure drop performance for U- and Z-types, respectively, compared to the base model. Thus, the simple and easily fabricated quadrilateral shape can improve the flow maldistribution and pressure drop caused by a dividing manifold with a sudden area expansion.


1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


Sign in / Sign up

Export Citation Format

Share Document