scholarly journals Effect of drag coefficient formula choice on wind stress climatology in the North Atlantic and the European Arctic

Oceanologia ◽  
2019 ◽  
Vol 61 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Iwona Wróbel-Niedźwiecka ◽  
Violetta Drozdowska ◽  
Jacek Piskozub
2018 ◽  
Author(s):  
Iwona Wrobel-Niedzwiecka ◽  
Violetta Drozdowska ◽  
Jacek Piskozub

Abstract. In this paper we have chosen to check the differences between the relevant or most commonly used parameterizations for drag coefficient (CD) for the momentum transfer values, especially in the North Atlantic (NA) and the European Arctic (EA). As is well know, the exact equation in the North equation that describes the connection betwenn the drag coefficient and wind speed depends on the author. We studied monthly values of air-sea momentum flux resulting from the choice of different drag coefficient parameterizations, adapted them to momentum flux (wind stress) calculations using SAR wind fields, sea-ice masks, as well as integrating procedures. We calculated monthly momentum flux averages on a 1º x 1º degree grid and derive average values for the North Atlantic and the European Arctic. We compared the resulting spreads in momentum flux to global values and values in the tropics, an area of prevailing low winds. We show that the choice of drag coefficient parameterization can lead to significant differences in resultant momentum flux (or wind stress) values. We found that the spread of results stemming from the choice of drag coefficient parameterization was 14 % in the Arctic, the North Atlantic and globally, but it was higher (19 %) in the tropics. On monthly time scales, the differences were larger at up to 29 % in the North Atlantic and 36 % in the European Arctic (in months of low winds) and even 50 % locally (the area west of Spitsbergen). When we chose the oldest parameterization (e.g Wu, 1969 (W69)) values of momentum flux were largest for all months, in compare to values from the two newest parameterizations (Large and Yeager, 2004 (LY04) and Andreas, 2012 (A12)), in both regions with high and low winds and CD values were consistently higher for all wind speeds. For global data not much seasonal change was note due to the fact that the strongest winds are in autumn and winter as these seasons are inverse by six months for the northern and southern hemispheres. The situation was more complicated when we considered results from the North Atlantic, as the seasonal variation in wind speed is clearly marked out there. With high winter winds, the A12 parameterization was no longer the one that produces the smallest wind stress. In this region, in summer, the highest wind stress values were produced by the NCEP/NCAR reanalysis, where in CD has a constant value. However, for low summer winds, it is the lowermost outlier. As the A12 parameterization behaves so distinctly differently with low winds, we showed seasonal results for the tropical ocean. The sequence of values for the parameterization was similar to that of the global ocean, but with visible differences betwenn NCEP/NCAR, A12 and LY04 parameterizaions. Because parameterization is supported with the largest experimental data set observations of very low (or even negative) momentum flux values for developed swell and low winds, our results suggest that most circulation models overestimate momentum flux.


2015 ◽  
Vol 12 (6) ◽  
pp. 2591-2616
Author(s):  
I. Wróbel ◽  
J. Piskozub

Abstract. The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air–sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.


1968 ◽  
Vol 49 (3) ◽  
pp. 247-253 ◽  
Author(s):  
E. B. Kraus

A simple sampling experiment gives a several octave range of values for the zonal surface stress obtainable from synoptic maps over the North Atlantic. Uncertainty about the value of the drag coefficient account for about half the variance. The different methods that have been used to specify this quantity are reviewed and an attempt is made to state explicitly the assumptions involved in each case.


2017 ◽  
Vol 30 (7) ◽  
pp. 2655-2678 ◽  
Author(s):  
Andreas Groth ◽  
Yizhak Feliks ◽  
Dmitri Kondrashov ◽  
Michael Ghil

Spectral analyses of the North Atlantic temperature field in the Simple Ocean Data Analysis (SODA) reanalysis identify prominent and statistically significant interannual oscillations along the Gulf Stream front and in large regions of the North Atlantic. A 7–8-yr oscillatory mode is characterized by a basinwide southwest-to-northeast–oriented propagation pattern in the sea surface temperature (SST) field. This pattern is found to be linked to a seesaw in the meridional dipole structure of the zonal wind stress forcing (TAUX). In the subpolar gyre, the SST and TAUX fields of this mode are shown to be in phase opposition, which suggests a cooling effect of the wind stress on the upper ocean layer. Over all, this mode’s temperature field is characterized by a strong equivalent-barotropic component, as shown by covariations in SSTs and sea surface heights, and by phase-coherent behavior of temperature layers at depth with the SST field. Recent improvements of multivariate singular spectrum analysis (M-SSA) help separate spatiotemporal patterns. This methodology is developed further and applied to studying the ocean’s response to variability in the atmospheric forcing. Statistical evidence is shown to exist for other mechanisms generating oceanic variability of similar 7–8-yr periodicity in the Gulf Stream region; the latter variability is likewise characterized by a strongly equivalent-barotropic component. Two other modes of biennial variability in the Gulf Stream region are also identified, and it is shown that interannual variability in this region cannot be explained by the ocean’s response to similar variability in the atmospheric forcing alone.


2010 ◽  
Vol 67 (5) ◽  
pp. 1687-1694 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Kimio Hanawa

Abstract Adopting a rotated empirical orthogonal function (REOF) analysis and a maximum covariance analysis (MCA), characteristics of the wintertime wind stress curl (WSC) anomaly field in the North Atlantic are investigated. In terms of both temporal variation and spatial distribution, the first four leading modes of WSC show a one-to-one relation with four atmospheric teleconnection patterns over the North Atlantic sector: the North Atlantic Oscillation (NAO) and the east Atlantic (EA), tropical–Northern Hemisphere (TNH), and Pacific–North American (PNA) patterns. These four patterns characterize the WSC variations over the different regions in the North Atlantic: NAO and EA over the eastern side of the basin, TNH over the central part of the basin, and PNA over the western side of the basin.


Sign in / Sign up

Export Citation Format

Share Document