Wave storm events in the Western Mediterranean Sea over four decades

2021 ◽  
pp. 101933
Author(s):  
Khalid Amarouche ◽  
Adem Akpınar ◽  
Alvaro Semedo
2021 ◽  
Author(s):  
Khalid AMAROUCHE ◽  
Bilal Bingölbali ◽  
Adem Akpinar

Abstract This study presents a detailed analysis of changes in wind and wave climate in the Western Mediterranean Sea (WMed), based on 41 years of accurate wind and wave hindcasts. The purpose of this research is to assess the magnitude of recent changes in wave climate and to locate the coastal areas most affected by these changes. Starting from the Theil-Sen slope estimator and the Mann Kendall test, trends in mean and Max significant wave heights (SWH) and wind speed (WS) are analyzed simultaneously on seasonal and annual scales. Thus, the new wave records observed since 2010 have been located spatially and temporally using a simple spatial analysis method, while the increases in maximum wave heights over the last decade have been estimated and mapped. This work was motivated by evidence pointed out by several authors concerning the influence of global climate change on the local climate in the Mediterranean Sea and by the increase in the number and intensity of wave storm events over recent years. Several exceptional storms have recently been observed along the Mediterranean coasts, including storm Adrian in 2018 and storm Gloria in 2020, which resulted in enormous damage along the French and Spanish coasts. The results of the present study reflect a worrying situation in a large part of the WMed coasts. Most of the WMed basin experiences a significant increasing trend in the annual Max of SWH and WS with evident inter-seasonal variability that underlines the importance of multi-scale analysis to assess wind and wave trends. Since 2013, about half of the WMed coastline has experienced records in wave climate, not recorded at least since 1979, and several areas have experienced three successive records. Several WMed coasts are experiencing a worrying evolution of the wave climate, which requires a serious mobilization to prevent probable catastrophic wave storms and ensure sustainable and economic development.


2014 ◽  
Vol 59 (1) ◽  
Author(s):  
Salvatore Mele ◽  
Maria Pennino ◽  
Maria Piras ◽  
José Bellido ◽  
Giovanni Garippa ◽  
...  

AbstractThe metazoan parasite assemblage of the head of 30 specimens of the Atlantic chub mackerel (Scomber colias) from the western Mediterranean Sea was analysed. Eight species of parasites were found, four mazocraeid monogeneans: Grubea cochlear (prevalence = 10%), Kuhnia scombercolias (59%), K. scombri (52%), Pseudokuhnia minor (86%); three didymozoid trematodes: Nematobothrium cf. faciale (21%), N. filiforme (41%), N. scombri (7%); and one laerneopodid copepod: Clavelissa scombri (7%). Results were compared with previously published data from 14 localities of the eastern Mediterranean Sea and the Atlantic Ocean, using non-parametric univariate and multivariate analyses, and the whole parasite fauna of S. colias was compared with that of the congeners (S. australasicus, S. japonicus and S. scombrus). Parasites showed to reflect the biogeographical and phylogenetic history of host. From a methodological point of view, the use of both non-parametric univariate and multivariate techniques proved to be effective tools to detect dissimilarities between parasite assemblages.


2021 ◽  
Vol 9 (2) ◽  
pp. 208
Author(s):  
Valentina Vannucchi ◽  
Stefano Taddei ◽  
Valerio Capecchi ◽  
Michele Bendoni ◽  
Carlo Brandini

A 29-year wind/wave hindcast is produced over the Mediterranean Sea for the period 1990–2018. The dataset is obtained by downscaling the ERA5 global atmospheric reanalyses, which provide the initial and boundary conditions for a numerical chain based on limited-area weather and wave models: the BOLAM, MOLOCH and WaveWatch III (WW3) models. In the WW3 computational domain, an unstructured mesh is used. The variable resolutions reach up to 500 m along the coasts of the Ligurian and Tyrrhenian seas (Italy), the main objects of the study. The wind/wave hindcast is validated using observations from coastal weather stations and buoys. The wind validation provides velocity correlations between 0.45 and 0.76, while significant wave height correlations are much higher—between 0.89 and 0.96. The results are also compared to the original low-resolution ERA5 dataset, based on assimilated models. The comparison shows that the downscaling improves the hindcast reliability, particularly in the coastal regions, and especially with regard to wind and wave directions.


2007 ◽  
Vol 105 (1-2) ◽  
pp. 101-117 ◽  
Author(s):  
Tommaso Tesi ◽  
Stefano Miserocchi ◽  
Miguel A. Goñi ◽  
Leonardo Langone

Author(s):  
M. Carrassón ◽  
J. Matallanas

The present study examines the feeding habits of Alepocephalus rostratus, the only species of the family Alepocephalidae in the Mediterranean Sea and the second most important fish species, in terms of biomass, inhabiting the deep slope of the Catalan Sea. Samples were obtained at depths between 1000–2250 m. Diet was analysed for two different size-classes (immature and mature specimens) at three different bathymetric strata during two different seasons. The feeding habits of A. rostratus included a narrow range of mobile macroplanktonic organisms (e.g. Pyrosoma atlanticum and Chelophyes appendiculata) and some material of benthic origin. Pyrosoma atlanticum was the preferred prey item in spring at 1000–1425 m, being very scarce in summer at the same depth as a consequence of its scarcity in the environment during this season. There were some ontogenic differences in the diet of A. rostratus at 1425–2250 m. Adults ingested more and larger prey than juvenile specimens. The scarcity of resources below 1200–1400 m fostered a more diversified diet, as well as passive predation of sedimented material.


Sign in / Sign up

Export Citation Format

Share Document