scholarly journals Cell-penetrating peptides enhance the transduction of adeno-associated virus serotype 9 in the central nervous system

Author(s):  
Yuan Meng ◽  
Dong Sun ◽  
Yiyan Qin ◽  
Xiaoyi Dong ◽  
Guangzuo Luo ◽  
...  
2012 ◽  
Vol 23 (4) ◽  
pp. 382-389 ◽  
Author(s):  
Lluis Samaranch ◽  
Ernesto A. Salegio ◽  
Waldy San Sebastian ◽  
Adrian P. Kells ◽  
Kevin D. Foust ◽  
...  

2019 ◽  
Vol 116 (23) ◽  
pp. 11402-11407 ◽  
Author(s):  
Tom Haywood ◽  
Corinne Beinat ◽  
Gayatri Gowrishankar ◽  
Chirag B. Patel ◽  
Israt S. Alam ◽  
...  

There is a growing need for monitoring or imaging gene therapy in the central nervous system (CNS). This can be achieved with a positron emission tomography (PET) reporter gene strategy. Here we report the development of a PET reporter gene system using the PKM2 gene with its associated radiotracer [18F]DASA-23. The PKM2 reporter gene was delivered to the brains of mice by adeno-associated virus (AAV9) via stereotactic injection. Serial PET imaging was carried out over 8 wk to assess PKM2 expression. After 8 wk, the brains were excised for further mRNA and protein analysis. PET imaging at 8 wk post-AAV delivery showed an increase in [18F]DASA-23 brain uptake in the transduced site of mice injected with the AAV mice over all controls. We believe PKM2 shows great promise as a PET reporter gene and to date is the only example that can be used in all areas of the CNS without breaking the blood–brain barrier, to monitor gene and cell therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ying Zhang ◽  
Pan Guo ◽  
Zhe Ma ◽  
Peng Lu ◽  
Dereje Kebebe ◽  
...  

AbstractAlthough nanomedicine have greatly developed and human life span has been extended, we have witnessed the soared incidence of central nervous system (CNS) diseases including neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), ischemic stroke, and brain tumors, which have severely damaged the quality of life and greatly increased the economic and social burdens. Moreover, partial small molecule drugs and almost all large molecule drugs (such as recombinant protein, therapeutic antibody, and nucleic acid) cannot cross the blood–brain barrier. Therefore, it is especially important to develop a drug delivery system that can effectively deliver therapeutic drugs to the central nervous system for the treatment of central nervous system diseases. Cell penetrating peptides (CPPs) provide a potential strategy for the transport of macromolecules through the blood–brain barrier. This study analyzed and summarized the progress of CPPs in CNS diseases from three aspects: CPPs, the conjugates of CPPs and drug, and CPPs modified nanoparticles to provide scientific basis for the application of CPPs for CNS diseases.


2003 ◽  
pp. 221-236 ◽  
Author(s):  
Matthew J. During ◽  
Deborah Young ◽  
Kristin Baer ◽  
Patricia Lawlor ◽  
Matthias Klugmann

Sign in / Sign up

Export Citation Format

Share Document