scholarly journals Systemic gene delivery to the central nervous system using Adeno-associated virus

Author(s):  
Mathieu Bourdenx ◽  
Nathalie Dutheil ◽  
Erwan Bezard ◽  
Benjamin Dehay
2019 ◽  
Vol 116 (23) ◽  
pp. 11402-11407 ◽  
Author(s):  
Tom Haywood ◽  
Corinne Beinat ◽  
Gayatri Gowrishankar ◽  
Chirag B. Patel ◽  
Israt S. Alam ◽  
...  

There is a growing need for monitoring or imaging gene therapy in the central nervous system (CNS). This can be achieved with a positron emission tomography (PET) reporter gene strategy. Here we report the development of a PET reporter gene system using the PKM2 gene with its associated radiotracer [18F]DASA-23. The PKM2 reporter gene was delivered to the brains of mice by adeno-associated virus (AAV9) via stereotactic injection. Serial PET imaging was carried out over 8 wk to assess PKM2 expression. After 8 wk, the brains were excised for further mRNA and protein analysis. PET imaging at 8 wk post-AAV delivery showed an increase in [18F]DASA-23 brain uptake in the transduced site of mice injected with the AAV mice over all controls. We believe PKM2 shows great promise as a PET reporter gene and to date is the only example that can be used in all areas of the CNS without breaking the blood–brain barrier, to monitor gene and cell therapy.


2014 ◽  
Vol 6 (9) ◽  
pp. 855-861 ◽  
Author(s):  
A. R. Fernandes ◽  
D. M. Chari

We describe a multicellular neural model to study nanoparticle uptake and gene delivery, using stem cell derived cell populations.


2003 ◽  
Vol 14 (13) ◽  
pp. 1215-1223 ◽  
Author(s):  
H. Peluffo ◽  
A. Arís ◽  
L. Acarin ◽  
B. González ◽  
A. Villaverde ◽  
...  

Viral Vectors ◽  
1995 ◽  
pp. 1-23 ◽  
Author(s):  
Joseph C. Glorioso ◽  
Mary Ann Bender ◽  
William F. Goins ◽  
Neal DeLuca ◽  
David J. Fink

2003 ◽  
Vol 7 (6) ◽  
pp. 801-810 ◽  
Author(s):  
Pierre Cordelier ◽  
Elisabeth Van Bockstaele ◽  
Sandra A Calarota ◽  
David S Strayer

2012 ◽  
Vol 48 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Thomas B. Lentz ◽  
Steven J. Gray ◽  
R. Jude Samulski

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 165
Author(s):  
Ellen S. Hauck ◽  
James G. Hecker

Appropriate gene delivery systems are essential for successful gene therapy in clinical medicine. Lipid-mediated nucleic acid delivery is an alternative to viral vector-mediated gene delivery and has the following advantages. Lipid-mediated delivery of DNA or mRNA is usually more rapid than viral-mediated delivery, offers a larger payload, and has a nearly zero risk of incorporation. Lipid-mediated delivery of DNA or RNA is therefore preferable to viral DNA delivery in those clinical applications that do not require long-term expression for chronic conditions. Delivery of RNA may be preferable to non-viral DNA delivery in some clinical applications, since transit across the nuclear membrane is not necessary, and onset of expression with RNA is therefore even faster than with DNA, although both are faster than most viral vectors. Delivery of RNA to target organ(s) has previously been challenging due to RNA’s rapid degradation in biological systems, but cationic lipids complexed with RNA, as well as lipid nanoparticles (LNPs), have allowed for delivery and expression of the complexed RNA both in vitro and in vivo. This review will focus on the non-viral lipid-mediated delivery of RNAs, including mRNA, siRNA, shRNA, and microRNA, to the central nervous system (CNS), an organ with at least two unique challenges. The CNS contains a large number of slowly dividing or non-dividing cell types and is protected by the blood brain barrier (BBB). In non-dividing cells, RNA-lipid complexes demonstrated increased transfection efficiency relative to DNA transfection. The efficiency, timing of the onset, and duration of expression after transfection may determine which nucleic acid is best for which proposed therapy. Expression can be seen as soon as 1 h after RNA delivery, but duration of expression has been limited to 5–7 h. In contrast, transfection with a DNA lipoplex demonstrates protein expression within 5 h and lasts as long as several weeks after transfection.


Sign in / Sign up

Export Citation Format

Share Document