scholarly journals ac4C acetylation of RUNX2 catalyzed by NAT10 promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells and prevents ovariectomy-induced bone loss

Author(s):  
Wen Yang ◽  
Hongyu Li ◽  
Yanfeng Wu ◽  
Rujia Mi ◽  
Wenzhou Liu ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3221 ◽  
Author(s):  
Sung-Yen Lin ◽  
Lin Kang ◽  
Chau-Zen Wang ◽  
Han Huang ◽  
Tsung-Lin Cheng ◽  
...  

Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (−)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).


2020 ◽  
Vol 318 (5) ◽  
pp. C1005-C1017
Author(s):  
Jiangtao Bai ◽  
Yuyang Wang ◽  
Jianping Wang ◽  
Jianglong Zhai ◽  
Feilong He ◽  
...  

The role of cellular senescence induced by radiation in bone loss has attracted much attention. As one of the common complications of anticancer radiotherapy, irradiation-induced bone deterioration is common and clinically significant, but the pathological mechanism has not been elucidated. This study was performed to explore the cellular senescence and senescence-associated secretory phenotype (SASP) induction of bone marrow-derived mesenchymal stem cells (BMSCs) by irradiation and its role in osteogenic differentiation dysfunction. It was observed that irradiated BMSCs lost typical fibroblast-like morphology, exhibited suppressed viability and differentiation potential accompanied with senescence phenotypes, including an increase in senescence-associated β-galactosidase (SA-β-gal) staining-positive cells, and upregulated senescence-related genes p53/p21, whereas no changes happened to p16. Additionally, DNA damage γ-H2AX foci, G0/G1 phase of cell cycle arrest, and cellular and mitochondrial reactive oxygen species (ROS) increased in an irradiation dose-dependent manner. Meanwhile, the JAK1/STAT3 pathway was activated and accompanied by an increase in SASP secretion, such as IL-6, IL-8, and matrix metalloproteinase-9 (MMP9), whereas 0.8 μM JAK1 inhibitor (JAKi) treatment effectively inhibited the JAK pathway and SASP production. Furthermore, conditioned medium (CM) from irradiation-induced senescent (IRIS) BMSCs exhibited a markedly reduced ability in osteogenic differentiation and marker gene expression of osteoblasts, whereas CM with JAKi intervention may effectively improve these deterioration effects. In conclusion, irradiation could provoke BMSC senescence and SASP secretion and further aggravate osteogenic differentiation dysfunction via paracrine signaling, whereas SASP targeting may be a possible intervention strategy for alleviating irradiation-induced bone loss.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kulisara Marupanthorn ◽  
Chairat Tantrawatpan ◽  
Pakpoom Kheolamai ◽  
Duangrat Tantikanlayaporn ◽  
Sirikul Manochantr

AbstractMesenchymal stem cells (MSCs) are important in regenerative medicine because of their potential for multi-differentiation. Bone marrow, chorion and placenta have all been suggested as potential sources for clinical application. However, the osteogenic differentiation potential of MSCs derived from chorion or placenta is not very efficient. Bone morphogenetic protein-2 (BMP-2) plays an important role in bone development. Its effect on osteogenic augmentation has been addressed in several studies. Recent studies have also shown a relationship between miRNAs and osteogenesis. We hypothesized that miRNAs targeted to Runt-related transcription factor 2 (Runx-2), a major transcription factor of osteogenesis, are responsible for regulating the differentiation of MSCs into osteoblasts. This study examines the effect of BMP-2 on the osteogenic differentiation of MSCs isolated from chorion and placenta in comparison to bone marrow-derived MSCs and investigates the role of miRNAs in the osteogenic differentiation of MSCs from these sources. MSCs were isolated from human bone marrow, chorion and placenta. The osteogenic differentiation potential after BMP-2 treatment was examined using ALP staining, ALP activity assay, and osteogenic gene expression. Candidate miRNAs were selected and their expression levels during osteoblastic differentiation were examined using real-time RT-PCR. The role of these miRNAs in osteogenesis was investigated by transfection with specific miRNA inhibitors. The level of osteogenic differentiation was monitored after anti-miRNA treatment. MSCs isolated from chorion and placenta exhibited self-renewal capacity and multi-lineage differentiation potential similar to MSCs isolated from bone marrow. BMP-2 treated MSCs showed higher ALP levels and osteogenic gene expression compared to untreated MSCs. All investigated miRNAs (miR-31, miR-106a and miR148) were consistently downregulated during the process of osteogenic differentiation. After treatment with miRNA inhibitors, ALP activity and osteogenic gene expression increased over the time of osteogenic differentiation. BMP-2 has a positive effect on osteogenic differentiation of chorion- and placenta-derived MSCs. The inhibition of specific miRNAs enhanced the osteogenic differentiation capacity of various MSCs in culture and this strategy might be used to promote bone regeneration. However, further in vivo experiments are required to assess the validity of this approach.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fangzi Gong ◽  
Le Gao ◽  
Luyao Ma ◽  
Guangxin Li ◽  
Jianhong Yang

Abstract Background Progressive population aging has contributed to the increased global prevalence of diabetes and osteoporosis. Inhibition of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by hyperglycemia is a potential pathogenetic mechanism of osteoporosis in diabetic patients. Uncarboxylated osteocalcin (GluOC), a protein secreted by mature osteoblasts, regulates bone development as well as glucose and lipid metabolism. In our previous studies, GluOC was shown to promote osteoblastic differentiation of BMSCs; however, the underlying mechanisms are not well characterized. Tumor protein 63 (TP63), as a  transcription factor, is closely related to bone development and glucose metabolism. Results In this study, we verified that high glucose suppressed osteogenesis and upregulated adipogenesis in BMSCs, while GluOC alleviated this phenomenon. In addition, high glucose enhanced TP63 expression while GluOC diminished it. Knock-down of TP63 by siRNA transfection restored the inhibitory effect of high glucose on osteogenic differentiation. Furthermore, we detected the downstream signaling pathway PTEN/Akt/GSK3β. We found that diminishing TP63 decreased PTEN expression and promoted the phosphorylation of Akt and GSK3β. We then applied the activator and inhibitor of Akt, and concluded that PTEN/Akt/GSK3β participated in regulating the differentiation of BMSCs. Conclusions Our results indicate that GluOC reduces the inhibitory effect of high glucose on osteoblast differentiation by regulating the TP63/PTEN/Akt/GSK3β pathway. TP63 is a potential novel target for the prevention and treatment of diabetic osteoporosis.


2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


Sign in / Sign up

Export Citation Format

Share Document