scholarly journals Organ-on-chip technology for aerobic intestinal host – Anaerobic microbiota research

2021 ◽  
pp. 100013
Author(s):  
Elsbeth G.B.M. Bossink ◽  
Loes I. Segerink ◽  
Mathieu Odijk
Keyword(s):  
Author(s):  
Ш.С. Фахми ◽  
Н.В. Шаталова ◽  
В.В. Вислогузов ◽  
Е.В. Костикова

В данной работе предлагаются математический аппарат и архитектура многопроцессорной транспортной системы на кристалле (МПТСнК). Выполнена программно-аппаратная реализация интеллектуальной системы видеонаблюдения на базе технологии «система на кристалле» и с использованием аппаратного ускорителя известного метода формирования опорных векторов. Архитектура включает в себя сложно-функциональные блоки анализа видеоинформации на базе параллельных алгоритмов нахождения опорных точек изображений и множества элементарных процессоров для выполнения сложных вычислительных процедур алгоритмов анализа с использованием средств проектирования на базе реконфигурируемой системы на кристалле, позволяющей оценить количество аппаратных ресурсов. Предлагаемая архитектура МПТСнК позволяет ускорить обработку и анализ видеоинформации при решении задач обнаружения и распознавания чрезвычайных ситуаций и подозрительных поведений. In this paper, we propose the mathematical apparatus and architecture of a multiprocessor transport system on a chip (MPTSoC). Software and hardware implementation of an intelligent video surveillance system based on the "system on chip" technology and using a hardware accelerator of the well-known method of forming reference vectors. The architecture includes complex functional blocks for analyzing video information based on parallel algorithms for finding image reference points and a set of elementary processors for performing complex computational procedures for algorithmic analysis. using design tools based on a reconfigurable system on chip that allows you to estimate the amount of hardware resources. The proposed MPTSoC architecture makes it possible to speed up the processing and analysis of video information when solving problems of detecting and recognizing emergencies and suspicious behaviors


2016 ◽  
Vol 4 (1) ◽  
pp. e1142493 ◽  
Author(s):  
Marinke W van der Helm ◽  
Andries D van der Meer ◽  
Jan C T Eijkel ◽  
Albert van den Berg ◽  
Loes I Segerink

Author(s):  
Animita Das

Hearing aids are electroacoustic gadgets commonly worn in or behind the ear and are intended to enhance the speech Nowadays hearing aids support various application unlike the traditional ones such that it can act like headphones streaming audio signals from internet-enabled devices connected wirelessly via Bluetooth. This paper aims to review the various advancements in the hearing aid technology. System on chip technology of the microcontroller have been used in various studies to develop and design an effective hearing assistant device and help the people with hearing impairment to lead a normal life. Ten articles have been reviewed for the study and it can be concluded that IoT is the future for an efficient, cost effective hearing assistive system [1]


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Joachim Wiest

Label-free monitoring of living cells is used in various applications such as drug development, toxicology, regenerative medicine or environmental monitoring. The most prominent methods for monitoring the extracellular acidification, oxygen consumption, electrophysiological activity and morphological changes of living cells are described. Furthermore, the intelligent mobile lab (IMOLA) – a computer controlled system integrating cell monitoring and automated cell cultivation – is described as an example of a cell-based system for microphysiometry. Results from experiments in the field of environmental monitoring using algae are presented. An outlook toward the development of an organ-on-chip technology is given.


2016 ◽  
Vol 11 (01) ◽  
pp. C01059-C01059 ◽  
Author(s):  
R. Bartoldus ◽  
R. Claus ◽  
N. Garelli ◽  
R.T. Herbst ◽  
M. Huffer ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 68-77 ◽  
Author(s):  
Amy Cochrane ◽  
Hugo J. Albers ◽  
Robert Passier ◽  
Christine L. Mummery ◽  
Albert van den Berg ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bartosz Kempisty ◽  
Rafał Walczak ◽  
Paweł Antosik ◽  
Patrycja Sniadek ◽  
Marta Rybska ◽  
...  

Since microfollicular environment and the size of the follicle are important markers influencing oocyte quality, the aim of this study is to present the spectral characterization of oocytes isolated from follicles of various sizes using lab-on-chip (LOC) technology and to demonstrate how follicle size may affect oocyte quality. Porcine oocytes (each,n=100) recovered from follicles of different sizes, for example, from large (>5 mm), medium (3–5 mm), and small (<3 mm), were analyzed after precedingin vitromaturation (IVM). The LOC analysis was performed using a silicon-glass sandwich with two glass optical fibers positioned “face-to-face.” Oocytes collected from follicles of different size classes revealed specific and distinguishable spectral characteristics. The absorbance spectra (microspectrometric specificity) for oocytes isolated from large, medium, and small follicles differ significantly (P<0.05) and the absorbance wavelengths were between 626 and 628 nm, between 618 and 620 nm, and less than 618 nm, respectively. The present study offers a parametric and objective method of porcine oocyte assessment. However, up to now this study has been used to evidence spectral markers associated with follicular size in pigs, only. Further investigations with functional-biological assays and comparing LOC analyses with fertilization and pregnancy success and the outcome of healthy offspring must be performed.


2019 ◽  
Vol 2019 ◽  
pp. 1-42 ◽  
Author(s):  
David Naranjo-Hernández ◽  
Javier Reina-Tosina ◽  
Mart Min

This work develops a thorough review of bioimpedance systems for healthcare applications. The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpedance to the sources of noise and artifacts. Bioimpedance applications such as body composition assessment, impedance cardiography (ICG), transthoracic impedance pneumography, electrical impedance tomography (EIT), and skin conductance are described and analyzed. A breakdown of recent advances and future challenges of bioimpedance is also performed, addressing topics such as transducers for biosensors and Lab-on-Chip technology, measurements in implantable systems, characterization of new parameters and substances, and novel bioimpedance applications.


Author(s):  
Federica Caselli ◽  
Nicola A. Nodargi ◽  
Paolo Bisegna

Cell mechanics is a discipline that bridges cell biology with mechanics. Emerging microscale technologies are opening new venues in the field, due to their costeffectiveness, relatively easy fabrication, and high throughput. Two examples of those technologies are discussed here: microfluidic impedance cytometry and erythrocyte electrodeformation. The former is a lab-on-chip technology offering a simple, non-invasive, label-free method for counting, identifying and monitoring cellular biophysical and mechanical function at the single-cell level. The latter is a useful complement to the former, enabling cell deformation under the influence of an applied electric field.


2016 ◽  
Vol 12 (11) ◽  
pp. 603-608
Author(s):  
Alvaro Angel Arrieta Almario ◽  
Oscar Camilo Fuentes Amin

Sign in / Sign up

Export Citation Format

Share Document