scholarly journals Microfluidic Method of Pig Oocyte Quality Assessment in relation to Different Follicular Size Based on Lab-on-Chip Technology

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Bartosz Kempisty ◽  
Rafał Walczak ◽  
Paweł Antosik ◽  
Patrycja Sniadek ◽  
Marta Rybska ◽  
...  

Since microfollicular environment and the size of the follicle are important markers influencing oocyte quality, the aim of this study is to present the spectral characterization of oocytes isolated from follicles of various sizes using lab-on-chip (LOC) technology and to demonstrate how follicle size may affect oocyte quality. Porcine oocytes (each,n=100) recovered from follicles of different sizes, for example, from large (>5 mm), medium (3–5 mm), and small (<3 mm), were analyzed after precedingin vitromaturation (IVM). The LOC analysis was performed using a silicon-glass sandwich with two glass optical fibers positioned “face-to-face.” Oocytes collected from follicles of different size classes revealed specific and distinguishable spectral characteristics. The absorbance spectra (microspectrometric specificity) for oocytes isolated from large, medium, and small follicles differ significantly (P<0.05) and the absorbance wavelengths were between 626 and 628 nm, between 618 and 620 nm, and less than 618 nm, respectively. The present study offers a parametric and objective method of porcine oocyte assessment. However, up to now this study has been used to evidence spectral markers associated with follicular size in pigs, only. Further investigations with functional-biological assays and comparing LOC analyses with fertilization and pregnancy success and the outcome of healthy offspring must be performed.

2020 ◽  
Vol 46 (05) ◽  
pp. 622-636
Author(s):  
Crispin Szydzik ◽  
Rose J. Brazilek ◽  
Warwick S. Nesbitt

AbstractThe manipulation of blood within in vitro environments presents a persistent challenge, due to the highly reactive nature of blood, and its multifaceted response to material contact, changes in environmental conditions, and stimulation during handling. Microfluidic Lab-on-Chip systems offer the promise of robust point-of-care diagnostic tools and sophisticated research platforms. The capacity for precise control of environmental and experimental conditions afforded by microfluidic technologies presents unique opportunities that are particularly relevant to research and clinical applications requiring the controlled manipulation of blood. A critical bottleneck impeding the translation of existing Lab-on-Chip technology from laboratory bench to the clinic is the ability to reliably handle relatively small blood samples without negatively impacting blood composition or function. This review explores design considerations critical to the development of microfluidic systems intended for use with whole blood from an engineering perspective. Material hemocompatibility is briefly explored, encompassing common microfluidic device materials, as well as surface modification strategies intended to improve hemocompatibility. Operational hemocompatibility, including shear-induced effects, temperature dependence, and gas interactions are explored, microfluidic sample preparation methodologies are introduced, as well as current techniques for on-chip manipulation of the whole blood. Finally, methods of assessing hemocompatibility are briefly introduced, with an emphasis on primary hemostasis and platelet function.


2017 ◽  
Vol 60 (No. 12) ◽  
pp. 663-674 ◽  
Author(s):  
B. Kempisty ◽  
P. Zawierucha ◽  
S. Ciesiolka ◽  
H. Piotrowska ◽  
P. Antosik ◽  
...  

Developmental competence of female gametes determines their maturation ability, successful fertilisation, and proper zygote formation. Oocyte quality may be assessed by expression profiling of several gene markers such as Cx43, TGFB, GDF9, BMP, Lox and Pdia5 that determine the biological features of oocytes. Conversely, several other extrinsic factors, including follicular size or heat shock may significantly influence oocyte quality and ability to grow and develop during folliculo- and oogenesis. However, using molecular methods for evaluation of oocyte quality often leads to destruction of an analysed cell. Therefore, there is an increased requirement to seek new non-invasive methods of oocyte-embryo quality assessment. Here we describe the Lab-on-Chip system based on microfluidic technology, which is the first parametric and objective device for evaluation of oocyte developmental competence using spectral images. In this review several extrinsic factors and molecular markers of oocyte developmental competence are discussed. Furthermore, based on our previous studies, we discuss the possibility of applying the spectrophotometric system (Lab-on-Chip) in both biomedical and reproductive research in domestic animals.


2019 ◽  
Vol 140 ◽  
pp. 68-77 ◽  
Author(s):  
Amy Cochrane ◽  
Hugo J. Albers ◽  
Robert Passier ◽  
Christine L. Mummery ◽  
Albert van den Berg ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bao-Yu Jia ◽  
De-Cai Xiang ◽  
Qing-Yong Shao ◽  
Bin Zhang ◽  
Shao-Na Liu ◽  
...  

AbstractMammalian oocytes represent impaired quality after undergoing a process of postovulatory aging, which can be alleviated through various effective ways such as reagent treatment. Accumulating evidences have revealed the beneficial effects of astaxanthin (Ax) as a potential antioxidant on reproductive biology. Here, porcine matured oocytes were used as a model to explore whether Ax supplement can protect against oocyte aging in vitro and the underlying mechanism, and therefore they were cultured with or without 2.5 μM Ax for an additional 24 h. Aged oocytes treated with Ax showed improved yield and quality of blastocysts as well as recovered expression of maternal genes. Importantly, oxidative stress in aged oocytes was relieved through Ax treatment, based on reduced reactive oxygen species and enhanced glutathione and antioxidant gene expression. Moreover, inhibition in apoptosis and autophagy of aged oocyte by Ax was confirmed through decreased caspase-3, cathepsin B and autophagic activities. Ax could also maintain spindle organization and actin expression, and rescue functional status of organelles including mitochondria, endoplasmic reticulum, Golgi apparatus and lysosomes according to restored fluorescence intensity. In conclusion, Ax might provide an alternative for ameliorating the oocyte quality following aging in vitro, through the mechanisms mediated by its antioxidant properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-42 ◽  
Author(s):  
David Naranjo-Hernández ◽  
Javier Reina-Tosina ◽  
Mart Min

This work develops a thorough review of bioimpedance systems for healthcare applications. The basis and fundamentals of bioimpedance measurements are described covering issues ranging from the hardware diagrams to the configurations and designs of the electrodes and from the mathematical models that describe the frequency behavior of the bioimpedance to the sources of noise and artifacts. Bioimpedance applications such as body composition assessment, impedance cardiography (ICG), transthoracic impedance pneumography, electrical impedance tomography (EIT), and skin conductance are described and analyzed. A breakdown of recent advances and future challenges of bioimpedance is also performed, addressing topics such as transducers for biosensors and Lab-on-Chip technology, measurements in implantable systems, characterization of new parameters and substances, and novel bioimpedance applications.


Author(s):  
Federica Caselli ◽  
Nicola A. Nodargi ◽  
Paolo Bisegna

Cell mechanics is a discipline that bridges cell biology with mechanics. Emerging microscale technologies are opening new venues in the field, due to their costeffectiveness, relatively easy fabrication, and high throughput. Two examples of those technologies are discussed here: microfluidic impedance cytometry and erythrocyte electrodeformation. The former is a lab-on-chip technology offering a simple, non-invasive, label-free method for counting, identifying and monitoring cellular biophysical and mechanical function at the single-cell level. The latter is a useful complement to the former, enabling cell deformation under the influence of an applied electric field.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Jiandong Wu ◽  
Meili Dong ◽  
Claudio Rigatto ◽  
Yong Liu ◽  
Francis Lin

2014 ◽  
Vol 26 (6) ◽  
pp. 806 ◽  
Author(s):  
Yong-Xun Jin ◽  
Ming-Hui Zhao ◽  
Zhong Zheng ◽  
Jung-Suk Kwon ◽  
Seul-Ki Lee ◽  
...  

Previous studies show that porcine oocyte aging resulting from asynchronised IVM impairs embryo developmental competence. In the present study we investigated whether trichostatin A (TSA; an inhibitor of histone deacetylation) prolongs the maturation time and prevents the aging of oocytes. Porcine oocytes were cultured in medium containing increasing concentrations of TSA (300 nM) for 24, 44 or 64 h. The percentage of oocytes that underwent germinal vesicle breakdown was significantly lower in the TSA-treated group (300 nM) than in the control group. TSA did not affect oocyte quality at MII based on levels of maturation-promoting factor, the phosphorylation status of mitogen-activated protein kinase or histone H3K9 acetylation analysis. We also compared the preimplantation developmental competence and the viability of pathenogenetic embryos treated with 100 nM TSA for 24 h and then continuously cultured for another 24 h in TSA free condition. No significant differences were observed for either parameter between the TSA-treated and control groups. These results indicate that TSA prolongs the IVM of porcine oocytes but that oocyte quality and aging are not affected. These findings provide a feasible option by which to adjust the initiation time of downstream experiments based on porcine matured oocytes.


2009 ◽  
Vol 15 (12) ◽  
pp. 1873-1877 ◽  
Author(s):  
Qiuping Chen ◽  
Qiuling Chen ◽  
Daniel Milanese ◽  
Monica Ferraris
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document