Control of femtosecond single-filament formation via feedback-based wavefront shaping

2021 ◽  
Vol 490 ◽  
pp. 126929
Author(s):  
Jing Li ◽  
Wenjiang Tan ◽  
Jinhai Si ◽  
Shiyun Tang ◽  
Zhen Kang ◽  
...  
2015 ◽  
Vol 36 (2) ◽  
pp. 129-131 ◽  
Author(s):  
Xiaoxin Xu ◽  
Hangbing Lv ◽  
Hongtao Liu ◽  
Tiancheng Gong ◽  
Guoming Wang ◽  
...  

Author(s):  
James Junker ◽  
Joachim R. Sommer

Junctional sarcoplasmic reticulum (JSR) in all its forms (extended JSR, JSR of couplings, corbular SR) in both skeletal and cardiac muscle is always located at the Z - I regions of the sarcomeres. The Z tubule is a tubule of the free SR (non-specialized SR) which is consistently located at the Z lines in cardiac muscle (1). Short connections between JSR and Z lines have been described (2), and bundles of filaments at Z lines have been seen in skeletal (3) and cardiac (4) muscle. In opossum cardiac muscle, we have seen bundles of 10 nm filaments stretching across interfibrillary spaces and adjacent myofibrils with extensions to the plasma- lemma in longitudinal (Fig. 1) and transverse (Fig. 2) sections. Only an occasional single filament is seen elsewhere along a sarcomere. We propose that these filaments represent anchor fibers that maintain the observed invariant topography of the free SR and JSR throughout the contraction-relaxation cycle.


Author(s):  
U. Aebi ◽  
R. Millonig ◽  
H. Salvo

To date, most 3-D reconstructions of undecorated actin filaments have been obtained from actin filament paracrystal data (for refs, see 1,2). However, due to the fact that (a) the paracrystals may be several filament layers thick, and (b) adjacent filaments may sustantially interdigitate, these reconstructions may be subject to significant artifacts. None of these reconstructions has permitted unambiguous tracing or orientation of the actin subunits within the filament. Furthermore, measured values for the maximal filament diameter both determined by EM and by X-ray diffraction analysis, vary between 6 and 10 nm. Obviously, the apparent diameter of the actin filament revealed in the EM will critically depend on specimen preparation, since it is a rather flexible supramolecular assembly which can easily be bent or distorted. To resolve some of these ambiguities, we have explored specimen preparation conditions which may preserve single filaments sufficiently straight and helically ordered to be suitable for single filament 3-D reconstructions, possibly revealing molecular detail.


Author(s):  
Bhanu Sood ◽  
Michael Pecht

Abstract Failures in printed circuit boards account for a significant percentage of field returns in electronic products and systems. Conductive filament formation is an electrochemical process that requires the transport of a metal through or across a nonmetallic medium under the influence of an applied electric field. With the advent of lead-free initiatives, boards are being exposed to higher temperatures during lead-free solder processing. This can weaken the glass-fiber bonding, thus enhancing conductive filament formation. The effect of the inclusion of halogen-free flame retardants on conductive filament formation in printed circuit boards is also not completely understood. Previous studies, along with analysis and examinations conducted on printed circuit boards with failure sites that were due to conductive filament formation, have shown that the conductive path is typically formed along the delaminated fiber glass and epoxy resin interfaces. This paper is a result of a year-long study on the effects of reflow temperatures, halogen-free flame retardants, glass reinforcement weave style, and conductor spacing on times to failure due to conductive filament formation.


1995 ◽  
Vol 32 (4) ◽  
pp. 187-196 ◽  
Author(s):  
L. Pechar

The study presents data on the species composition of cyanobacterial water blooms in Czech fish ponds from the 1950s to the 1990s. Since the 1950s, a shift from large-colonial Aphanizomenon flos-aquae var. flos-aquae through Microcystis aeruginosa and small-colonial species of Anabaena to single-filament species (Planktohrix agardhii, Limnothrix redekei, Aphanizomenon gracile) or single-cell forms (Microcystis ichtyoblabe), has been observed. The changes in the species composition of the water blooms are closely related to changes in fishery management (increase in fish stock, increase in application of organic fertilizers). At present the high predation of fish upon zooplankton results in elimination of large colonial blooms of A. flos-aquae associated with large filtering zooplankton (Daphnia). Low grazing pressure of zooplankton, low light conditions and low N:P ratios are suitable conditions for mass development of the small species of cyanobacteria. High pH is not necessary to achieve cyanobacteria dominance.


2021 ◽  
Vol 118 (7) ◽  
pp. 071104
Author(s):  
D. Barton ◽  
M. Lawrence ◽  
J. Dionne

Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 655-665
Author(s):  
Stephanie C. Malek ◽  
Adam C. Overvig ◽  
Sajan Shrestha ◽  
Nanfang Yu

AbstractActively tunable and reconfigurable wavefront shaping by optical metasurfaces poses a significant technical challenge often requiring unconventional materials engineering and nanofabrication. Most wavefront-shaping metasurfaces can be considered “local” in that their operation depends on the responses of individual meta-units. In contrast, “nonlocal” metasurfaces function based on the modes supported by many adjacent meta-units, resulting in sharp spectral features but typically no spatial control of the outgoing wavefront. Recently, nonlocal metasurfaces based on quasi-bound states in the continuum have been shown to produce designer wavefronts only across the narrow bandwidth of the supported Fano resonance. Here, we leverage the enhanced light-matter interactions associated with sharp Fano resonances to explore the active modulation of optical spectra and wavefronts by refractive-index tuning and mechanical stretching. We experimentally demonstrate proof-of-principle thermo-optically tuned nonlocal metasurfaces made of silicon and numerically demonstrate nonlocal metasurfaces that thermo-optically switch between distinct wavefront shapes. This meta-optics platform for thermally reconfigurable wavefront shaping requires neither unusual materials and fabrication nor active control of individual meta-units.


Sign in / Sign up

Export Citation Format

Share Document