Evaluating transformation of marine kerogens from Rock-Eval measurements: A. Derivation of a scaled thermal maturation path from laboratory maturation data

2021 ◽  
pp. 104305
Author(s):  
Yoav O. Rosenberg ◽  
Itay J. Reznik
Keyword(s):  
Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 811
Author(s):  
Gabriel A. Barberes ◽  
Rui Pena dos Reis ◽  
Nuno L. Pimentel ◽  
André L. D. Spigolon ◽  
Paulo E. Fonseca ◽  
...  

The Baixo Alentejo Flysch Group (BAFG) is an important stratigraphic unit that covers over half of the South Portuguese Zone (SPZ) depositional area, and it is composed by three main tectono-stratigraphic units: the Mértola, Mira, and Brejeira formations. All of these formations contain significant thicknesses of black shales and have several wide areas with 0.81 wt.%, 0.91 wt.%, and 0.72 wt.% average total organic carbon (TOC) (respectively) and thermal maturation values within gas zones (overmature). This paper is considering new data from classical methods of organic geochemistry characterization, such as TOC, Rock–Eval pyrolysis, and organic petrography, to evaluate the unconventional petroleum system from the SPZ. A total of 53 samples were collected. From the stratigraphical point of view, TOC values seem to have a random distribution. The Rock–Eval parameters point out high thermal maturation compatible with gas window (overmature zone). The samples are dominated by gas-prone extremely hydrogen-depleted type III/IV kerogen, which no longer has the potential to generate and expel hydrocarbons. The petrographic analyses positioned the thermal evolution of these samples into the end of catagenesis to metagenesis (wet to dry gas zone), with values predominantly higher than 2 %Ro (dry gas zone). The presence of thermogenic hydrocarbon fluids characterized by previous papers indicate that the BAFG from SPZ represents a senile unconventional petroleum system, working nowadays basically as a gas reservoir.


2021 ◽  
Vol 43 (2) ◽  
Author(s):  
Gladys Marcela Avendaño-Sánchez ◽  
Mario García-González ◽  
Luis Enrique Cruz-Guevara ◽  
Luis Felipe Cruz-Ceballos

A geochemical characterization of Los Cuervos and Molino formations in the Cesar Sub-Basin was carried out using core samples obtained from the ANH-La Loma-1 Well. A total of 113 Rock-Eval pyrolysis analysis, total organic carbon (TOC), total sulphur content (TS) analysis, 13 vitrinite reflectance analysis (%Ro) and 30 thin-section petrographic analysis were performed. Based on these new data, it was possible to classify the quality of organic matter and the current thermal maturation of Los Cuervos and Molino formations. Additionally, a petrographic characterization of 30 samples allowed the correlation of the lithology with the geochemical results. Also, one-dimensional geochemical modelling was implemented in order to contribute to the knowledge of the evolution of the oil system in the Cesar Sub-Basin. The spatial distribution of the formations used in the modelling was obtained from 2 seismic lines two-way time. The results obtained indicate that Los Cuervos Formation presents TOC values from 0.29 to 66.55%, TS values from 0.02 to 11.29%, their organic matter consisted of type III kerogen which is consistent with an immature thermal maturation stage. In contrast, the Molino Formation presents TOC values from 0.23 to 2.28%, TS values from 0.001 to 1.39%, their organic matter consisted of type II/III kerogen this suggests an early entry to the oil window with a maximum pyrolysis temperature (Tmax) value of 442°C. The geochemical modelling tunes better with measured data from palaeo-geothermometers (%Ro and Tmax). The geochemical modelling shows that, between 60 - 40 million years ago (mya), the Cretaceous formations entered in the oil generation window and it is expected that, between 40 - 30 mya, the Lagunitas, Aguas Blancas, and La Luna formations will be at their peak of hydrocarbon generation.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3511
Author(s):  
Elena Gershelis ◽  
Andrey Grinko ◽  
Irina Oberemok ◽  
Elizaveta Klevantseva ◽  
Natalina Poltavskaya ◽  
...  

Global warming in high latitudes causes destabilization of vulnerable permafrost deposits followed by massive thaw-release of organic carbon. Permafrost-derived carbon may be buried in the nearshore sediments, transported towards the deeper basins or degraded into the greenhouse gases, potentially initiating a positive feedback to climate change. In the present study, we aim to identify the sources, distribution and degradation state of organic matter (OM) stored in the surface sediments of the Laptev Sea (LS), which receives a large input of terrestrial carbon from both Lena River discharge and intense coastal erosion. We applied a suite of geochemical indicators including the Rock Eval parameters, traditionally used for the matured OM characterization, and terrestrial lipid biomarkers. In addition, we analyzed a comprehensive grain size data in order to assess hydrodynamic sedimentation regime across the LS shelf. Rock-Eval (RE) data characterize LS sedimentary OM with generally low hydrogen index (100–200 mg HC/g TOC) and oxygen index (200 and 300 CO2/g TOC) both increasing off to the continental slope. According to Tpeak values, there is a clear regional distinction between two groups (369–401 °C for the inner and mid shelf; 451–464 °C for the outer shelf). We suggest that permafrost-derived OM is traced across the shallow and mid depths with high Tpeak and slightly elevated HI values if compared to other Arctic continental margins. Molecular-based degradation indicators show a trend to more degraded terrestrial OC with increasing distance from the coast corroborating with RE results. However, we observed much less variation of the degradation markers down to the deeper sampling horizons, which supports the notion that the most active OM degradation in LS land-shelf system takes part during the cross-shelf transport, not while getting buried deeper.


Fuel ◽  
2015 ◽  
Vol 159 ◽  
pp. 776-783 ◽  
Author(s):  
Hui Han ◽  
Ning-ning Zhong ◽  
Cai-xia Huang ◽  
Wei Zhang

Sign in / Sign up

Export Citation Format

Share Document