Variation of the Acoustic Parameter Harmonic-to-noise Ratio in Relation to Different Background Noise Levels

2021 ◽  
Vol 72 (3) ◽  
pp. 177-181
Author(s):  
María-José Marsano-Cornejo ◽  
Ángel Roco-Videla ◽  
Damián Capona-Corbalán ◽  
Carla Silva-Harthey
2011 ◽  
Vol 18 (3-4) ◽  
pp. 293-311
Author(s):  
Maarten P.M. Luykx ◽  
Martijn L.S. Vercammen

There is a certain tendency in the design of theatres to make the halls quite large. From a perspective of natural speech intelligibility and strength of speech this is disadvantageous, because an actor's voice has a certain, limited loudness and consequently the signal-to-noise ratio at the listener may become too low. Based on the influence of signal/noise ratio on speech intelligibility, it is deduced that the strength G ≥ 6 dB and room volumes have to be limited to 4000–4500 m3 in order to maintain sufficient loudness for natural speech. Sound level measurements during performances with natural speech in a theatre have been performed, to determine background noise levels in the hall due to the audience and to investigate the signal-to-noise ratio of the actors voice at the audience. The background levels are mainly determined by installation noise and not by the influence of the audience.


Perception ◽  
1995 ◽  
Vol 24 (4) ◽  
pp. 363-372 ◽  
Author(s):  
Johannes M Zanker

The subjective strength of a percept often depends on the stimulus intensity in a nonlinear way. Such coding is often reflected by the observation that the just-noticeable difference between two stimulus intensities (JND) is proportional to the absolute stimulus intensity. This behaviour, which is usually referred to as Weber's Law, can be interpreted as a compressive nonlinearity extending the operating range of a sensory system. When the noise superimposed on a motion stimulus is increased along a logarithmic scale (in order to provide linear steps in subjective difference) in motion-coherency measurements, observers often report that the subjective differences between the various noise levels increase together with the absolute level. This observation could indicate a deviation from Weber's Law for variation of motion strength as obtained by changing the signal-to-noise ratio in random-dot kinematograms. Thus JNDs were measured for the superposition of uncorrelated random-dot patterns on static random-dot patterns and three types of motion stimuli realised as random-dot kinematograms, namely large-field and object ‘Fourier’ motion (all or a group of dots move coherently), ‘drift-balanced’ motion (a travelling region of static dots), and paradoxical ‘theta’ motion (the dots on the surface of an object move in opposite direction to the object itself). For all classes of stimuli, the JNDs when expressed as differences in signal-to-noise ratio turned out to increase with the signal-to-noise ratio, whereas the JNDs given as percentage of superimposed noise appear to be similar for all tested noise levels. Thus motion perception is in accordance with Weber's Law when the signal-to-noise ratio is regarded as stimulus intensity, which in turn appears to be coded in a nonlinear fashion. In general the Weber fractions are very large, indicating a poor differential sensitivity in signal-to-noise measurements.


1979 ◽  
Vol 73 (5) ◽  
pp. 179-184
Author(s):  
E. R. Strelow ◽  
J. T. Boys

A binaural sensory aid for research with blind children is described along with the rationale for its design features. The basic operation of this form of aid is described in detail with particular reference to those features that control the sensing parameters of range, direction and field of view. A novel automatic level controller which ensures that device sounds remain audible but not excessively loud, in spite of changes in background noise levels, is also described. The likely future development of these forms of sonic aids is discussed.


2016 ◽  
Vol 50 (0) ◽  
Author(s):  
Fabio Scatolini ◽  
Cláudio Jorge Pinto Alves

ABSTRACT OBJECTIVE To perform a quantitative analysis of the background noise at Congonhas Airport surroundings based on large sampling and measurements with no interruption. METHODS Measuring sites were chosen from 62 and 72 DNL (day-night-level) noise contours, in urban sites compatible with residential use. Fifteen sites were monitored for at least 168 hours without interruption or seven consecutive days. Data compilation was based on cross-reference between noise measurements and air traffic control records, and results were validated by airport meteorological reports. Preliminary diagnoses were established using the standard NBR-13368. Background noise values were calculated based on the Sound Exposure Level (SEL). Statistic parameters were calculated in one-hour intervals. RESULTS Only four of the fifteen sites assessed presented aircraft operations as a clear cause for the noise annoyance. Even so, it is possible to detect background noise levels above regulation limits during periods of low airport activity or when it closes at night. CONCLUSIONS All the sites monitored showed background noise levels above regulation limits between 7:00 and 21:00. In the intervals between 6:00-6:59 and 21:00-22:59 the noise data, when analyzed with the current airport operational characteristics, still allow the development of additional mitigating measures.


2020 ◽  
Vol 49 (3) ◽  
pp. 20190002 ◽  
Author(s):  
Qi Sun ◽  
Min-jun Dong ◽  
Xiao-feng Tao ◽  
Meng-da Jiang ◽  
Chi Yang

Objective: To compare and evaluate the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) values between a 15-channel phased array head coil and 6-channel dS Flex M surface coil in the MRI of temporomandibular joint. Methods: 300 patients were randomly assigned to two groups: 150 patients were examined by using a 15-channel phased array head coil and the other 150 patients were scanned by using a 6-channel dS Flex M surface coil. All of the data were set in the same 6 regions of interest including the temporal lobe, condyle neck, lateral pterygoid muscle, parotid gland, the adipose area and an area of the background noise). SNR and CNR values were measured respectively. Results: The numerical variation law of SNR and CNR values measured in regionsof interest of each group was similar, although different coils were used. There were statistically significant differences of SNR values in all of the oblique sagittal (OSag) proton density-weighted imaging, the part of OSag T 2 weighted image (T 2WI) except for SNR4 and SNR5. and oblique coronal (OCor) T 2WI sequence except for SNR2. On the contrary, SNR4 and SNR5 values in the OCor T 2WI and SNR5 values in OSag T 2WI sequences by using the surface coil were higher than those by using the head coil. There were no statistically significant intergroup differences of CNR values in OSag proton density-weighted imaging sequence except CNR1 and in OSag T 2WI sequence except CNR5. But, statistically significant differences of all the values in the OCor T 2WI sequence except for CNR1 were observed. Conclusion: Both the phased array head coil and dS Flex M surface coil can be used for temporomandibular joint MRI.


1963 ◽  
Vol 35 (5) ◽  
pp. 779-780 ◽  
Author(s):  
Lewis S. Goodfriend ◽  
R. L. Cardinell ◽  
Paul B. Ostergaard ◽  
Ray Donley

2017 ◽  
Vol 141 (5) ◽  
pp. 3944-3944
Author(s):  
Benjamin S. Gottesman ◽  
Dante Francomano ◽  
Taylor Broadhead ◽  
Bryan C. Pijanowski

1989 ◽  
Vol 69 (3-2) ◽  
pp. 1127-1130 ◽  
Author(s):  
William F. Vitulli ◽  
Connie P. Anderson

This exploratory investigation concerned the effects of both auditory and visual stimulus variations on the accuracy of mental solutions to addition problems presented on a computer screen (CRT). 5 intensities of background noise and 5 background hues were presented randomly to 123 undergraduate volunteers as they mentally summed 25 numerals ranging from 1 to 5 at rates of either 1 sec. or 3 sec. per numeral timed from the onset of the previous numeral. A 2 × 2 × 5 mixed split-plot factorial analysis of variance gave a significant difference in errors between rates of digit presentation with greater accuracy associated with the 3-sec. rate. There was no significant difference in mean errors for auditory vs color modalities, yet a post hoc Newman-Keuls paired-comparison test of decibel levels at the 1-sec. rate of digit presentation gave a significant difference in mean errors between 60-dB and 70-dB sound-pressure levels (SPLs) of white masking noise. Also, a post hoc F test on differences between successive stages indicated significant differences suggesting a “learning set.” Comparisons between ‘everyday’ instances of these noise levels are made with implications for optimal computational environments.


1983 ◽  
Vol 50 (1) ◽  
pp. 27-45 ◽  
Author(s):  
M. B. Sachs ◽  
H. F. Voigt ◽  
E. D. Young

Responses of auditory nerve fibers to steady-state vowels presented alone and in the presence of background noise were obtained from anesthetized cats. Representation of vowels based on average discharge rate and representation based primarily on phase-locked properties of responses are considered. Profiles of average discharge rate versus characteristic frequency (CF) ("rate-place" representation) can show peaks of discharge rate in the vicinity of formant frequencies when vowels are presented alone. These profiles change drastically in the presence of background noise, however. At moderate vowel and noise levels and signal/noise ratios of +9 dB, there are not peaks of rate near the second and third formant frequencies. In fact, because of two-tone suppression, rate to vowels plus noise is less than rate to noise alone for fibers with CFs above the first formant. Rate profiles measured over 5-ms intervals near stimulus onset show clear formant-related peaks at higher sound levels than do profiles measured over intervals later in the stimulus (i.e., in the steady state). However, in background noise, rate profiles at onset are similar to those in the steady state. Specifically, for fibers with CFs above the first formant, response rates to the noise are suppressed by the addition of the vowel at both vowel onset and steady state. When rate profiles are plotted for low spontaneous rate fibers, formant-related peaks appear at stimulus levels higher than those at which peaks disappear for high spontaneous fibers. In the presence of background noise, however, the low spontaneous fibers do not preserve formant peaks better than do the high spontaneous fibers. In fact, the suppression of noise-evoked rate mentioned above is greater for the low spontaneous fibers than for high. Representations that reflect phase-locked properties as well as discharge rate ("temporal-place" representations) are much less affected by background noise. We have used synchronized discharge rate averaged over fibers with CFs near (+/- 0.25 octave) a stimulus component as a measure of the population temporal response to that component. Plots of this average localized synchronized rate (ALSR) versus frequency show clear first and second formant peaks at all vowel and noise levels used. Except at the highest level (vowel at 85 dB sound pressure level (SPL), signal/noise = +9 dB), there is also a clear third formant peak. At signal-to-noise ratios where there are no second formant peaks in rate profiles, human observers are able to discriminate second formant shifts of less than 112 Hz. ALSR plots show clear second formant peaks at these signal/noise ratios.


Sign in / Sign up

Export Citation Format

Share Document