scholarly journals Normative 3D acetabular orientation measurements by the low-dose EOS imaging system in 102 asymptomatic subjects in standing position: Analyses by side, gender, pelvic incidence and reproducibility

2017 ◽  
Vol 103 (2) ◽  
pp. 209-215 ◽  
Author(s):  
T. Thelen ◽  
P. Thelen ◽  
H. Demezon ◽  
S. Aunoble ◽  
J.-C. Le Huec
2010 ◽  
Vol 13 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Jean Dubousset ◽  
Georges Charpak ◽  
Wafa Skalli ◽  
Jacques Deguise ◽  
Gabriel Kalifa

Very precise combined work between multidisciplinary partners (radiation engineers in physics, engineers in biomechanics, medical radiologists and orthopedic pediatric surgeons) has led to the concept and development of a new low-dose radiation device named EOS. This device has three main advantages: (1) Thanks to the invention of Georges Charpak who designed gaseous detectors for X-rays, the reduction of dose necessary to obtain a good image of skeletal system was 8 to 10 times less for 2D imaging; compared to the dose necessary to obtain a 3D reconstruction from CT scan cuts, the reduction factor was 800 to 1000. (2) The accuracy of 3D reconstruction obtained is better than that of 3D reconstruction from CT scan cuts. (3) The patient in addition gets imaged in a standing functional position, thanks to the AP and lateral X-rays obtained from head to feet simultaneously. This is a big advantage compared to CT scans which are used only in lying position. From the simultaneous AP and lateral X-rays of the whole body obtained via the 3D bone external envelop technique, the biomechanics engineers obtain 3D reconstruction of every level of osteo-articular system, especially for spine, in standing position with an acceptable period of time for reconstruction. This (in spite of the evolution of standing MRI) allows more precise bone reconstruction in orthopedics, especially at the level of the entire skeleton, including the head, spine, pelvis, lower limbs, giving new consideration for physiology, physiopathology and therapeutics.


10.29007/41f9 ◽  
2018 ◽  
Author(s):  
Maximilian Fischer ◽  
Stephanie Schörner ◽  
Stefan Rohde ◽  
Christian Lüring ◽  
Klaus Radermacher

The sagittal orientation of the pelvis commonly called pelvic tilt has an effect on the orientation of the cup in total hip arthroplasty (THA). Pelvic tilt is different between individuals and changes during activities of daily living. In particular, the pelvic tilt in standing position should be considered during the planning of THA to adapt the target angles of the cup patient-specifically to minimize wear and the risk of dislocation. Methods to measure pelvic tilt require an additional step in the planning process, may be time consuming and additional devices or x-ray imaging are necessary.In this study, the relationship between three functional parameters describing the sagittal pelvic orientation in standing position and seven morphological parameters of the pelvis was investigated. Correlations might be used to estimate the pelvic tilt in standing position by the morphology of the pelvis in order to avoid additional measuring techniques of pelvic tilt in the planning process of THA. For 18 subjects a semi-automatic process was established to match a 3D-reconstruction of the pelvis from CT scans to orthogonal EOS imaging in standing position and to calculate the morphological and functional parameters of the pelvis subsequently.The two strongest correlations of the linear correlation analysis were observed between morphological pelvic incidence and functional sacral slope (r = 0.78; p = 0.0001) and between morphological pubic symphysis-posterior superior iliac spines- ratio and functional tilt of anterior pelvic plane (r = -0.59; p = 0.0098). The results of this study suggest that patient-specific adjustments to the orientation of the cup in planning of THA without additional measurement of the sagittal pelvic orientation in standing position should be based on the correlation between morphological pelvic incidence and functional sacral slope.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yasuhito Takahashi ◽  
Kei Watanabe ◽  
Masashi Okamoto ◽  
Shun Hatsushikano ◽  
Kazuhiro Hasegawa ◽  
...  

Abstract Background Although pelvic incidence (PI) is a key morphologic parameter in assessing spinopelvic sagittal alignment, accurate measurements of PI become difficult in patients with severe hip dislocation or femoral head deformities. This study aimed to investigate the reliability of our novel morphologic parameters and the correlations with established sagittal spinopelvic parameters. Methods One hundred healthy volunteers (25 male and 75 female), with an average age of 38.9 years, were analysed. Whole-body alignment in the standing position was measured using a slot-scanning X-ray imager. We measured the established spinopelvic sagittal parameters and a novel parameter: the sacral incidence to pubis (SIP). The correlation coefficient of each parameter, regression equation of PI using SIP, and regression equation of lumbar lordosis (LL) using PI or SIP were obtained. The intraclass correlation coefficient (ICC) was calculated as an evaluation of the measurement reliability. Results Reliability analysis showed high intra- and inter-rater agreements in all the spinopelvic parameters, with ICCs > 0.9. The SIP and pelvic inclination angle (PIA) demonstrated strong correlation with PI (R = 0.96) and pelvic tilt (PT) (R = 0.92). PI could be predicted according to the regression equation: PI = − 9.92 + 0.905 * SIP (R = 0.9596, p < 0.0001). The ideal LL could be predicted using the following equation using PI and age: ideal LL = 32.33 + 0.623 * PI – 0.280 * age (R = 0.6033, p < 0.001) and using SIP and age: ideal LL = 24.29 + 0.609 * SIP – 0.309 * age (R = 0.6177, p < 0.001). Conclusions Both SIP and PIA were reliable parameters for determining the morphology and orientation of the pelvis, respectively. Ideal LL was accurately predicted using the SIP with equal accuracy as the PI. Our findings will assist clinicians in the assessment of spinopelvic sagittal alignment. Trial registration This study was retrospectively registered with the UMIN Clinical Trials Registry (UMIN000042979; January 13, 2021).


Medicine ◽  
2021 ◽  
Vol 100 (15) ◽  
pp. e25445
Author(s):  
Jung-Taek Kim ◽  
Quan Hu Shen ◽  
Chang-Hoon Jeon ◽  
Nam-Su Chung ◽  
Seungmin Jeong ◽  
...  

2018 ◽  
Vol 34 (S1) ◽  
pp. 17-18
Author(s):  
Martina Andellini ◽  
Francesco Faggiano ◽  
Roxana di Mauro ◽  
Pietro Derrico ◽  
Matteo Ritrovato

Introduction:Patients with adolescent idiopathic scoliosis frequently receive X-ray imaging at diagnosis and subsequent follow monitoring. To achieve the ALARA concept of radiation dose, a biplanar low-dose X-ray system (BLDS) has been proposed. The aim of the study is to gather evidence on safety, accuracy and overall effectiveness of a BLDS compared with CT scanning, in a pediatric population, in order to support the final decision on possible acquisition of such innovative diagnostic system.Methods:The new method Decision-oriented HTA (DoHTA) was applied to carefully assess the diagnostic technology. It was developed starting from the EUnetHTA Core Model® integrated with the analytic hierarchy process in order to identify all the relevant assessment aspects of the technology involved, identified from scientific literature, experts’ judgments and specific context analysis of Bambino Gesù Children's Hospital. A weight was associated to each assessment element and the alternatives’ ranking was defined.Results:This innovative system provides orthopedic images in standing or sitting position, being able to examine the spine and lower limbs under normal weight-bearing conditions. This system is recommended for particular clinical indications as scoliosis and other congenital deformities of the spine. It is able to acquire simultaneous posteroanterior and lateral images in a single scan without vertical distortion and with lower radiation exposure than CT scanning. 2D images acquired can be combined to obtain a 3D reconstruction scanning based on a semi-automated statistical model.Conclusions:The major advantages of BLDS are the relatively low dose of radiation and the possibility of obtaining a 3D reconstruction of the bones. Our preliminary results show that data on the clinical effectiveness are limited but the technical advancements of BLDS appear promising in terms of patient management and patient health outcomes associated with its use.


2017 ◽  
Vol 58 (9) ◽  
pp. 1108-1114 ◽  
Author(s):  
Janni Jensen ◽  
Bo R Mussmann ◽  
John Hjarbæk ◽  
Zaid Al-Aubaidi ◽  
Niels W Pedersen ◽  
...  

Background Children with leg length discrepancy often undergo repeat imaging. Therefore, every effort to reduce radiation dose is important. Using low dose preview images and noise reduction software rather than diagnostic images for length measurements might contribute to reducing dose. Purpose To compare leg length measurements performed on diagnostic images and low dose preview images both acquired using a low-dose bi-planar imaging system. Material and Methods Preview and diagnostic images from 22 patients were retrospectively collected (14 girls, 8 boys; mean age, 12.8 years; age range, 10–15 years). All images were anonymized and measured independently by two musculoskeletal radiologists. Three sets of measurements were performed on all images; the mechanical axis lines of the femur and the tibia as well as the anatomical line of the entire extremity. Statistical significance was tested with a paired t-test. Results No statistically significant difference was found between measurements performed on the preview and on the diagnostic image. The mean tibial length difference between the observers was −0.06 cm (95% confidence interval [CI], −0.12 to 0.01) and −0.08 cm (95% CI, −0.21 to 0.05), respectively; 0.10 cm (95% CI, 0.02–0.17) and 0.06 cm (95% CI, −0.02 to 0.14) for the femoral measurements and 0.12 cm (95% CI, −0.05 to 0.26) and 0.08 cm (95% CI, −0.02 to 0.19) for total leg length discrepancy. ICCs were >0.99 indicating excellent inter- and intra-rater reliability. Conclusion The data strongly imply that leg length measurements performed on preview images from a low-dose bi-planar imaging system are comparable to measurements performed on diagnostic images.


2017 ◽  
Vol 60 ◽  
pp. e64-e65
Author(s):  
Antoine Ferenczi ◽  
Valérie Wieczorek ◽  
Franck Legall ◽  
Antoine Moraux ◽  
Andre Thevenon
Keyword(s):  

2016 ◽  
Vol 32 ◽  
pp. 74
Author(s):  
M. Branchini ◽  
C.R. Gigliotti ◽  
A. del Vecchio ◽  
A. Loria ◽  
A. Zerbi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document