scholarly journals Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2

2021 ◽  
Vol 21 ◽  
pp. 100229
Author(s):  
Yuan Cao ◽  
Qiang Liu ◽  
Ruifeng Wang ◽  
Kun Liu ◽  
Weidong Chen ◽  
...  
2015 ◽  
Vol 118 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Tingdong Cai ◽  
Guangzhen Gao ◽  
Minrui Wang ◽  
Guishi Wang ◽  
Ying Liu ◽  
...  

2011 ◽  
Vol 65 (1) ◽  
pp. 108-112 ◽  
Author(s):  
Tingdong Cai ◽  
Guangzhen Gao ◽  
Weidong Chen ◽  
Gang Liu ◽  
Xiaoming Gao

2018 ◽  
Vol 53 (1) ◽  
pp. 94-105 ◽  
Author(s):  
Zhenhong Yu ◽  
Gregory Magoon ◽  
James Assif ◽  
William Brown ◽  
Richard Miake-Lye

Author(s):  
Jingsong Li ◽  
Xiaoming Gao ◽  
Weizheng Li ◽  
Zhensong Cao ◽  
Lunhua Deng ◽  
...  

2018 ◽  
Vol 18 (19) ◽  
pp. 14539-14553 ◽  
Author(s):  
Elijah G. Schnitzler ◽  
Jonathan P. D. Abbatt

Abstract. Light-absorbing organic aerosol, or brown carbon (BrC), has significant but poorly constrained effects on climate; for example, oxidation in the atmosphere may alter its optical properties, leading to absorption enhancement or bleaching. Here, we investigate for the first time the effects of heterogeneous OH oxidation on the optical properties of a laboratory surrogate of aqueous, secondary BrC in a series of photo-oxidation chamber experiments. The BrC surrogate was generated from aqueous resorcinol, or 1,3-dihydroxybenzene, and H2O2 exposed to >300 nm radiation that is atomized, passed through trace gas denuders, and injected into the chamber, which was conditioned to either 15 % or 60 % relative humidity (RH). Aerosol absorption and scattering coefficients and single scattering albedo (SSA) at 405 nm were measured using a photoacoustic spectrometer. At 60 % RH, upon OH exposure, absorption first increased, and the SSA decreased sharply. Subsequently, absorption decreased faster than scattering, and SSA increased gradually. Comparisons to the modelled trend in SSA, based on Mie theory calculations, confirm that the observed trend is due to chemical evolution, rather than slight changes in particle size. The initial absorption enhancement is likely due to molecular functionalization and/or oligomerization and the bleaching to fragmentation. By contrast, at 15 % RH, slow absorption enhancement was observed without appreciable bleaching. A multi-layer kinetics model, consisting of two surface reactions in series, was constructed to provide further insights regarding the RH dependence of the optical evolution. Candidate parameters suggest that the oxidation is efficient, with uptake coefficients on the order of unity. The parameters also suggest that, as RH decreases, reactivity decreases and aerosol viscosity increases, such that particles are well-mixed at 60 % RH but not at 15 % RH. These results further the current understanding of the complex processing of BrC that may occur in the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document