scholarly journals Relationship between volcanic activity and enrichment of shale organic matter during the Ordovician-Silurian transition in western Hubei, Southern China

Author(s):  
Junjun Shen ◽  
Pengwan Wang ◽  
Kongquan Chen ◽  
Dongtao Zhang ◽  
Yuman Wang ◽  
...  
Author(s):  
Haiming Tang ◽  
Chao Li ◽  
Lihong Shi ◽  
Li Wen ◽  
Kaikai Cheng ◽  
...  

Abstract Soil organic matter (SOM) and its fractions play an important role in maintaining or improving soil quality and soil fertility. Therefore, the effects of a 34-year long-term fertilizer regime on six functional SOM fractions under a double-cropping rice paddy field of southern China were studied in the current paper. The field experiment included four different fertilizer treatments: chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), 30% organic manure and 70% chemical fertilizer (OM) and without fertilizer input as control (CK). The results showed that coarse unprotected particulate organic matter (cPOM), biochemically, physically–biochemically and chemically protected silt-sized fractions (NH-dSilt, NH-μSilt and H-dSilt) were the main carbon (C) storage fractions under long-term fertilization conditions, accounting for 16.7–26.5, 31.1–35.6, 16.2–17.3 and 7.5–8.2% of the total soil organic carbon (SOC) content in paddy soil, respectively. Compared with control, OM treatment increased the SOC content in the cPOM, fine unprotected POM fraction, pure physically protected fraction and physico-chemically protected fractions by 58.9, 106.7, 117.6 and 28.3%, respectively. The largest proportion of SOC to total SOC in the different fractions was biochemically protected, followed by chemically and unprotected, and physically protected were the smallest. These results suggested that a physical protection mechanism plays an important role in stabilizing C of paddy soil. In summary, the results showed that higher functional SOM fractions and physical protection mechanism play an important role in SOM cycling in terms of C sequestration under the double-cropping rice paddy field.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Ming Wen ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

The upper Ordovician-lower Silurian shale has always been the main target of marine shale gas exploration in southern China. However, the shale gas content varies greatly across different regions. The organic matter content is one of the most important factors in determining gas content; therefore, determining the enrichment mechanisms of organic matter is an important problem that needs to be solved urgently. In this paper, upper Ordovician-lower Silurian shale samples from the X-1 and Y-1 wells that are located in the southern Sichuan area of the upper Yangtze region and the northwestern Jiangxi area of the lower Yangtze region, respectively, are selected for analysis. Based on the core sample description, well logging data analysis, mineral and elemental composition analysis, silicon isotope analysis, and TOC (total organic carbon) content analysis, the upper Ordovician-lower Silurian shale is studied to quantitatively calculate its content of excess silicon. Subsequently, the results of elemental analysis and silicon isotope analysis are used to determine the origin of excess silicon. Finally, we used U/Th to determine the characteristics of the redox environment and the relationship between excess barium and TOC content to judge paleoproductivity and further studied the mechanism underlying sedimentary organic matter enrichment in the study area. The results show that the excess silicon from the upper Ordovician-lower Silurian shale in the upper Yangtze area is derived from biogenesis. The sedimentary water body is divided into an oxygen-rich upper water layer that has higher paleoproductivity and a strongly reducing lower water that is conducive to the preservation of sedimentary organic matter. Thus, for the upper Ordovician-lower Silurian shale in the upper Yangtze region, exploration should be conducted in the center of the blocks with high TOC contents and strongly reducing water body. However, the excess silicon in the upper Ordovician-lower Silurian shale of the lower Yangtze area originates from hydrothermal activity that can enhance the reducibility of the bottom water and carry nutrients from the crust to improve paleoproductivity and enrich sedimentary organic matter. Therefore, for the upper Ordovician-lower Silurian shale in the lower Yangtze region, exploration should be conducted in the blocks near the junction of the two plates where hydrothermal activity was active.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoxue Liu ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Yan Song ◽  
Lin Jiang ◽  
...  

Organic matter is the material basis of shale hydrocarbon generation. The current organic matter content in shale is controlled by the original sedimentary organic matter abundance. Therefore, the study of the enrichment mechanism of sedimentary organic matter in shale has become an important issue to be solved. The Upper Yangtze area is the important exploration and exploitation area of marine shale gas in China. The shale of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in the Yangtze area is the research object. Choosing redox indicator and biological productivity indicator, the study explores the enrichment mechanism of sedimentary organic matter from two aspects, sealing of water and volcanic activity. The results show that excess siliceous mineral in the shale of the Wufeng Formation-Longmaxi Formation in the Upper Yangtze area is bioorigin. Excess siliceous mineral can be used as one of the indicators of biological productivity. On the one hand, layer phenomenon occurred since the strong water sealing during the sedimentary period of Wufeng and the lower section of the Longmaxi Formation, which results in the high content of oxygen in surface water. On the other hand, the active volcanic activity brought volcanic ash which was beneficial to biological reproduction. Both of these factors led to higher biological productivity during this period. At the same time, the strong sealing of water made the lower layer of the water more reductive, and the active volcanic activity caused climate change, enhancing the reduction of the lower layer of the water, which made the rich organic matter deposited from the surface water well preserved. In the sedimentary period of the upper section of the Longmaxi Formation 1st member in the Upper Yangtze area, on the one hand, due to the weakened sealing of water, the oxygen content of the upper water decreased. On the other hand, the volcanic activity weakened until it stopped, and the source of volcanic ash rich in nutrient elements decreased. These two aspects led to lower biological productivity during this period. At the same time, the weaker water sealing could lead to a decrease in the reduction of the lower layer of the water, and the gradual cessation of volcanic activity no longer affected the climate, causing the destruction of sedimentary organic matter by oxidation.


2019 ◽  
Vol 109 ◽  
pp. 381-393 ◽  
Author(s):  
Yiquan Ma ◽  
Yongchao Lu ◽  
Xiaofeng Liu ◽  
Gangyi Zhai ◽  
Yufang Wang ◽  
...  

2019 ◽  
Vol 7 (4) ◽  
pp. T843-T856
Author(s):  
Xinghua Wang ◽  
Arash Dahi Taleghani ◽  
Wenlong Ding

Characteristics of shale pore structures may play an important role in natural gas accumulation and consequently estimating the original gas in place. To determine the pore structure characteristics of Niutitang marine shale in the Sangzhi block, we carried out [Formula: see text] adsorption-desorption (LP-[Formula: see text]GA), [Formula: see text] adsorption (LP-[Formula: see text]GA), and methane isothermal adsorption on shale samples to reveal the pore size distribution (PSD) and its impact on the adsorption capacity. Results indicate that the Niutitang Shale is in stages of maturity and overmaturity with good organic matter, and they also indicate well-developed interparticle, intraparticle, and organic pores. Quartz and clay are found to be the main minerals, and the high illite content means that the Niutitang Shale is experiencing the later stage of clay mineral transformation. Various-sized shale pores are well-developed, and most of them are narrow and slit-like. For pores with diameters of 2–300 nm measured with LP-[Formula: see text]GA, mesopores (2–50 nm) contribute most of the total specific surface area (SSA) and total pore volume (TPV) in comparison to macropores (50–300 nm). For micropores ([Formula: see text]) tested by LP-[Formula: see text]GA, the PSD appears to be multimodal; shale pores of 0.50–0.90 nm diameter contribute most of the SSA and TPV. [Formula: see text]-SSA and [Formula: see text]-SSA indicate positive correlations with their corresponding TPV. The total organic matter (TOC) has good correlation with the SSA and TPV of micropores. The Langmuir volume positively correlates with the total SSA. Additionally, the TOC content has a good correlation with the Langmuir volume, which is consistent with the observation of well-developed fossils of diatoms and organic pores. As an important source of organic matter, more diatoms mean more organic matter, larger TOC values and quartz content, larger SSA and TPV of micropores, and, of course, stronger shale adsorption capacity. The results provide important guidance for the exploration and development of shale gas existing in the Sangzhi block.


Sign in / Sign up

Export Citation Format

Share Document